On the identities of modulo-p partitions

Yufei Huang, Bolian Liu

School of Mathematical Science, South China Normal University, Guangzhou, 510631, PR China

A R T I C L E I N F O

Article history:
Received 13 January 2011
Received in revised form 22 May 2011
Accepted 23 May 2011

Keywords:
(p, b, q)-partition
(p, b)-composition
Recurrence
Identity

A B S T R A C T

Some identities between partitions and compositions were obtained in the literature. As a natural extension, we introduce and study modulo-p partitions, where p is a positive integer. Moreover, several recurrence relations and some sufficient conditions for the existence of modulo-p partitions are given, respectively. In addition, we obtain some identities of modulo-p partitions. In the end, using the properties of a binary tree, we provide a method to determine modulo-p partitions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Lots of interesting partition identities occurred since the first identity was given by Euler [1]. On the other hand, research on identities involving partitions and ordered partitions (namely, compositions [2]) are few and have only occurred in recent years [3–5]. The first such effort was made by Agarwal [3] in 2003, and recently, Guo [4] gives some other identities using Agarwal’s method.

Inspired by the definitions of “odd–even” partitions, “even” partitions and their partition identities in [3,4], we consider a more general problem of the identities between partitions and compositions in this paper.

Throughout this paper, let s, n, p, m be positive integers, and b, q, t, c, r, d be nonnegative integers such that $s = tp + r$, $n = cp + d$, $0 \leq b, q, r, d \leq p - 1$. Let x^y denote the abbreviation of $x + x + \cdots + x$. We first introduce the (p, b, q)-partition, the F-(p, b, q)-partition and the (p, b)-composition as follows. For convenience, they are all called modulo-p partitions.

Definition 1.1 ([6]). A two-rowed array of nonnegative integers \(\left(\begin{array}{c} a_1 \\ b_1 \\ a_2 \\ b_2 \\ \vdots \\ a_k \\ b_k \end{array} \right) \) is called a Frobenius partition of n, where $a_1 > a_2 > \cdots > a_k \geq 0$, $b_1 > b_2 > \cdots > b_k \geq 0 (k \in \mathbb{Z}_+)$, and $n = k + \sum_{i=1}^{k} a_i + \sum_{i=1}^{k} b_i$.

Remark 1. Note that each partition can be represented by a Frobenius notation. For instance, the Frobenius notation of $22 = 8 + 7 + 3 + 3 + 1$ (see the following figure) is \(\left(\begin{array}{c} 7 \\ 4 \\ 5 \\ 2 \\ 0 \end{array} \right) \).

* This work is supported by NNSF of China (No. 11071088).
* Corresponding author.
E-mail address: liubl@scnu.edu.cn (B. Liu).

0895-7177/$–$ see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2011.05.046