Seismic response analysis of skew bridges with pounding deck–abutment joints

Elias G. Dimitrakopoulos
Department of Engineering, University of Cambridge, CB2 1PZ, United Kingdom

Article history:
Received 19 May 2010
Received in revised form
11 November 2010
Accepted 1 December 2010
Available online 8 January 2011

Keywords:
Skew bridges
Unilateral contact
Non-smooth structural dynamics
Concrete bridges

Abstract
In this paper the seismic response of short skew bridges with deck–abutment pounding joints is revisited. The permanent deck rotations and transverse displacements of such bridges after the recent earthquake in Chile created an incentive to revisit their non-conventional behaviour. A novel non-smooth rigid body approach is proposed to analyze the seismic response of pounding skew bridges which involves oblique frictional multi-contact phenomena. The coupling of the response, due to contact, is analysed in depth. It is shown that the tendency of skew bridges to exhibit transverse displacements and/or rotate (and hence unseat) after deck–abutment collisions is not a factor of the skew angle alone, but rather of the plan geometry plus friction. This is expressed with proposed dimensionless criteria. The study also unveils that the coupling is more pronounced in the low range of the frequency spectrum (short-period excitations/flexible structures) and presents novel dimensionless response spectra for the transverse displacements and rotations, triggered by oblique contact in a skew bridge subsystem. Despite the complexity of the response, the proposed spectra highlight a clear pattern. The dimensionless rotations, arising from contact, decline as the ratio of the structural versus excitation frequency increases and become practically negligible in the upper range of the frequency spectrum. Finally, a pilot application to a typical skew bridge is presented.

1. Introduction

This paper focuses on the seismic response of short skew bridges with deck–abutment joints, while it derives from a broader study [1–4] on the problem of earthquake-induced pounding in bridges. The recent earthquake in Chile [5,6] has created an incentive to revisit the non-conventional behaviour of skew bridges. As earthquake reconnaissance reports [7] indicate, skew bridges often rotate in the horizontal plane, thus tending to drop off the supports at the acute corners [8]. This behaviour is triggered by oblique contact and results in coupling of longitudinal and transverse response, binding in one of the obtuse corners and subsequently rotation in the direction of increasing the skew angle [8] (see also Fig. 1). Despite the recorded evidence from previous earthquakes which underline the importance of this mechanism, as well as the empirical vulnerability methodologies that acknowledge skew as a primary vulnerability factor of bridges [9], there are only a few analytical attempts to comprehend this mechanism.

One of the first contributions was made by Maragakis et al. [10], motivated by extensive damage during the 1971 San Fernando [7] earthquake. Maragakis et al. [10] focused on the interaction of short skew bridges with the abutments and the resulting rigid body rotational vibrations. In that study, the bridge deck was simulated with a rigid stick model and pounding with the abutments was taken into account with a spring activated after the gap closure. The analysis performed therein showed significant transverse displacements at the end supports due to rotations. Planar rigid body deck rotations were found to be primarily produced by impact of the skew deck with the abutment and not by non-symmetric (e.g. eccentricity in plan with respect to the centre of mass) restoring characteristics of the substructure, or impact between deck and wing walls. More than 20 years later, Abdel-Mohti and Pekcan [11] compared detailed 3D finite element modelling with simplified beam stick models of skew bridges and argued that the beam stick model is capable of capturing the coupling of the response and the main modes of the bridge, at least for moderate skew angles.

In their recent study, Saadeghvaziri and Yardani-Motlagh [12] examined the seismic vulnerability of Multi-Span Simply-Supported (MSSS) bridges. They marked that impact can impose high shear demands on the bearings of MSSS skew bridges, raising their failure probability. The coupling of the response displacements as well as rotations, caused by skew deck–abutment contact, was also underlined by Bignell et al. [13]. Bignell et al. conducted a series of push-over analyses with structural configurations representative of typical Illinois bridges. The ultimate load capacity of a bridge was reduced, due to the skew angle, up to nearly two thirds compared to the corresponding non-skew bridge. In addition, the presence of a skew angle introduced failure mechanisms unseen in the non-skew case, e.g. abutment bearing failure. Maleki [14] studied single span skew bridges using a SDOF model in an attempt to