An N-halamine-based rechargeable antimicrobial and biofilm controlling polyurethane

Xinbo Sun a, Zhengbing Cao a, Nuala Porteous b, Yuyu Sun a,⇑

a Biomedical Engineering Program, The University of South Dakota, 4800 North Career Avenue, Sioux Falls, SD 57107, USA
b Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-4404, USA

1. Introduction

Thanks to its wide availability, low cost, ease of fabrication, and excellent physical and biological properties polyurethane (PU) has become one of the most versatile polymers in medical, dental, industrial, institutional, and environmental applications [1–3]. Unfortunately, like most conventional polymers, the PU surface is susceptible to contamination by microorganisms, which can act as sources of cross-contamination and cross-infection [4–6]. More-