Fuzzy *-homomorphisms and fuzzy *-derivations in induced fuzzy \(C^*\)-algebras

Choonkil Park\(^a\), Jung Rye Lee\(^b\), Themistocles M. Rassias\(^c\), Reza Saadati\(^d\), *

\(^a\) Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
\(^b\) Department of Mathematics, Daejin University, Kyeonggi 487-711, Republic of Korea
\(^c\) Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
\(^d\) Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, I.R., Iran

ARTICLE INFO

Article history:
Received 23 February 2011
Received in revised form 4 May 2011
Accepted 4 May 2011

Keywords:
Induced fuzzy \(C^*\)-algebra
Fuzzy *-homomorphism
Fuzzy *-derivation
Fixed point
Hyers–Ulam stability
Cauchy–Jensen functional equation
Cauchy–Jensen functional inequality

ABSTRACT

Using the fixed point method, we prove the Hyers–Ulam stability of the Cauchy–Jensen functional equation and of the Cauchy–Jensen functional inequality in fuzzy Banach *-algebras and in induced fuzzy \(C^*\)-algebras.

Furthermore, using the fixed point method, we prove the Hyers–Ulam stability of fuzzy *-derivations in fuzzy Banach *-algebras and in induced fuzzy \(C^*\)-algebras.

Published by Elsevier Ltd

1. Introduction and preliminaries

The theory of fuzzy space has progressed greatly, developing the theory of randomness. Some mathematicians have defined fuzzy norms on a vector space from various points of view \[1–6\]. Following Cheng and Mordeson \[7\], Bag and Samanta \[1\] gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type \[8\] and investigated some properties of fuzzy normed spaces \[9\].

We use the definition of fuzzy normed spaces given in \[1,5,10\] to investigate a fuzzy version of the Hyers–Ulam stability for the Cauchy–Jensen functional equation in the fuzzy normed *-algebra setting.

Definition 1.1 \(\{1,5,10,11\}\). Let \(X\) be a complex vector space. A function \(N : X \times \mathbb{R} \rightarrow [0, 1]\) is called a fuzzy norm on \(X\) if for all \(x, y \in X\) and all \(s, t \in \mathbb{R}\),

\[
\begin{align*}
(N_1) & \quad N(x, t) = 0 \text{ for } t \leq 0; \\
(N_2) & \quad x = 0 \text{ if and only if } N(x, t) = 1 \text{ for all } t > 0; \\
(N_3) & \quad N(cx, t) = N(x, \frac{t}{|c|}) \text{ if } c \in \mathbb{C} \setminus \{0\}; \\
(N_4) & \quad N(x + y, s + t) \geq \min\{N(x, s), N(y, t)\}; \\
(N_5) & \quad N(x, \cdot) \text{ is a non-decreasing function of } \mathbb{R} \text{ and } \lim_{t \to \infty} N(x, t) = 1; \\
(N_6) & \quad \text{for } x \neq 0, N(x, \cdot) \text{ is continuous on } \mathbb{R}.
\end{align*}
\]

The pair \((X, N)\) is called a fuzzy normed vector space.

* Corresponding author.

E-mail addresses: baak@hanyang.ac.kr (C. Park), jrlee@daejin.ac.kr (J.R. Lee), trassias@math.ntua.gr (T.M. Rassias), rsaadati@eml.cc (R. Saadati).

0895-7177/$ – see front matter. Published by Elsevier Ltd
doi:10.1016/j.mcm.2011.05.012