Research paper

Investigating a novel nanostructured fibrin–agarose biomaterial for human cornea tissue engineering: Rheological properties

Ana-Maria Ionescua, Miguel Alaminosb, Juan de la Cruz Cardonaa, Juan de Dios García-López Duránc, Miguel González-Andradesb, Razvan Ghineaa, Antonio Camposb, Enrique Hitaa, María del Mar Péreza,*

a Department of Optics, Faculty of Science, University of Granada, Campus Fuentenueva S/N, Granada, 18071, Spain
b Department of Histology, Faculty of Medicine, University of Granada, Av. Madrid, no. 11, Granada, 18012, Spain
c Department of Applied Physics, Faculty of Science, University of Granada, Campus Fuentenueva S/N, Granada, 18071, Spain

A R T I C L E I N F O

Article history:
Received 15 February 2011
Received in revised form 15 June 2011
Accepted 21 June 2011
Published online 30 June 2011

Keywords:
Elastic modulus
Viscous modulus
Fibrin–agarose
Nanostructuring technique
Transparency

A B S T R A C T

In this work, the rheological properties of the biomaterial fibrin with different agarose concentrations, used for the generation of a bioengineered human corneal stroma by tissue engineering, before and after using a nanostructuring technique, were analyzed. The transparency of these artificial human stromas was also investigated. The temporal evaluation of the properties of these biomaterials is essential for the design of functional biological human corneal replacements. The nanostructuring technique used for the generation of nanostructured corneal constructs (NCCs) had a major influence on the rheological properties of the fibrin–agarose corneal equivalents. For an oscillatory shear stress of 1 Hz, well in the order of the natural oscillations of the human cornea, the NCCs had viscoelasticity values higher than those of non-nanostructured corneal constructs (N-NCCs), but similar to those of an ex vivo native cornea. The model that most resembled the rheological behavior of the native cornea was a fibrin–0.1% agarose concentration nanostructured construct. In addition, this artificial cornea model displayed optimal levels of transparency, similar to the native tissue. All these properties indicate that the fibrin–0.1% agarose concentration nanostructured construct might serve as an adequate candidate for the generation of an artificial complete cornea, not only for transplanting use but also for conducting pharmaceutical testing and biomedical research.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The cornea is a transparent avascular tissue comprising three major cellular layers: an outermost stratified squamous epithelium (about 50 µm thick), a stroma with keratocytes (central thickness about 500 µm), and an innermost monolayer of specialized endothelial cells (about 10 µm thick) (Cohen et al., 2001).