PSPACE Tableau Algorithms for Acyclic Modalized \(\mathcal{ALC} \)

Jia Tao · Giora Slutzki · Vasant Honavar

Received: 16 January 2010 / Accepted: 1 June 2011 / Published online: 9 July 2011
© Springer Science+Business Media B.V. 2011

Abstract We study \(\mathcal{ALCK}_m \) and \(\mathcal{ALCS}_4^m \), which extend the description logic \(\mathcal{ALC} \) by adding modal operators of the basic multi-modal logics \(K_m \) and \(S_4^m \). We develop a sound and complete tableau algorithm \(\Lambda_K \) for answering \(\mathcal{ALCK}_m \) queries w.r.t. an \(\mathcal{ALCK}_m \) knowledge base with an acyclic TBox. Defining tableau expansion rules in the presence of acyclic definitions by considering only the concept names on the left-hand side of TBox definitions or their negations, allows us to give a PSPACE implementation for \(\Lambda_K \). We then consider answering \(\mathcal{ALCS}_4^m \) queries w.r.t. an \(\mathcal{ALCS}_4^m \) knowledge base (with an acyclic TBox) in which the epistemic operators correspond to those of classical multi-modal logic \(S_4^m \). The expansion rules in the tableau algorithm \(\Lambda_{S_4} \) are designed to syntactically incorporate the epistemic properties. Blocking is incorporated into the tableau expansion rules to ensure termination. We also provide a PSPACE implementation for \(\Lambda_{S_4} \). In light of the fact that the satisfiability problem for \(\mathcal{ALCK}_m \) with general TBox and no epistemic properties (i.e., \(K_{\mathcal{ALC}} \)) is NEXPTIME-complete, we conclude that both \(\mathcal{ALCK}_m \) and \(\mathcal{ALCS}_4^m \) offer computationally manageable and practically useful fragments of \(K_{\mathcal{ALC}} \).

Keywords Description logic · \(\mathcal{ALC} \) · Modal logic · Tableau algorithm · PSPACE