RESEARCH ARTICLE

A Fuzzy Logic Model of Deionised and Water for Injection Systems for Sizing and Capacity Assessment Under Uncertainty

Pr_{i.k}

t

Frank Riedewald · Edmond Byrne · Kevin Cronin

Published online: 29 July 2011 © Springer Science+Business Media, LLC 2011

Abstract The operating performance of deionized and water for injection (DI/WFI) distribution systems can be difficult to analyse due to the highly variable demand that is drawn from these systems, a situation compounded by schedule uncertainties. This paper presents a fuzzy logic (FL) model of a typical DI/WFI system simulating schedule uncertainties in the opening and closing events of the offtake valves based on operator behaviour, e.g. tiredness of the operators. The model utilises discrete-event simulation to calculate the demand profile of the distribution system and a continuous simulation to compute the variation of the level in the storage tank. It is shown that the FL model may be useful in the design of new DI/WFI systems if little historical data are available.

Keywords WFI · DI · Capacity extension · Fuzzy logic · Uncertainty. High-purity water

Nomenclature

act _{i,k}	Opening/closing event of valve i, k
$act_{i,k}^{Wait} \\$	Opening/closing event of valve i, k
	waiting to be served
f _{Div}	Diversity factor
i	Integer parameter
k	Integer parameter
n	Integer parameter
n _{op}	Number of operators
n _{op,min}	Minimum number of operators

F. Riedewald (🖂) · E. Byrne · K. Cronin

Department of Process and Chemical Engineering, University College Cork, Cork, Ireland e-mail: frankriedewald@gmail.com

Time (h:m:s) tapi Valve of offtake point (tap) i along the distribution system $t_{2,j}^{B}$ Beginning of core break (h:m:s) $t_{3,j}^{B}$ End of core break (h:m:s) t^{close} Scheduled closing time for each $act_{i,k}$ (h:m:s) $t_{i,k,new}^{close} \\$ New closing time for each $act_{i,k}$ (h:m:s) $t_{i,k}^{D}$ Time delay for each $act_{i,k}$ (h:m:s) $t_{i,k}^{D,De}$ Defuzzified time delay for each act_{ik} (%) $t_{i,k}^{Delay,1} \\$ Time delay caused by operator for each act_{i,k} (h:m:s) $t_{i,k}^{Delay,2}$ Time delay caused by operator for each $act_{i,k}$ (h:m:s) $t_{i,k}^{\text{Delay,NoOp.}}$ Delay caused by no operator being available for $act_{i,k}$ (h:m:s) t_{i k}min,D Minimum duration of each $act_{i,k}$ (h:m:s) t_{ik}open Scheduled opening time for each act_{i,k} (h:m:s) $t_{i,k,new}^{open}$ New closing time for each $act_{i,k}$ (h:m:s) New opening time due to influence of $t_{i,k,new}^{open,R1}$ rule 1 (h:m:s) $t_{i,k,new}^{open,R4} \\$ New opening time due to influence of rule 4 (h:m:s) $t_{i,k,new}^{open,R5}$ New opening time due to influence of rule 5 (h:m:s) t^{sim} Simulated time (s)

Priority rules for each act_{i.k}