Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics

journal homepage: www.elsevier.com/locate/nlm

Study of a non-linear mechanical system using Boubaker polynomials expansion scheme BPES

D.H. Zhang

South China University, Guangzhou, China

ARTICLE INFO

Article history: Received 26 September 2010 Accepted 11 November 2010

Keywords: Mechanical systems System identification Algebraic equations BPES

1. Introduction

In the last decades, predicting complex mechanisms dynamic behaviours became of high interest. Since such systems involve uncertain parameters and non-linear structures, several identification models have been proposed and discussed [1–10].

One common difficulty evoked by most of these models is the transformation of the initial differential equation set into solvable algebraic equations. The last century literature presents panoplies of resolution-identification protocols based on sampling, transforms and mapping techniques [11–19].

Recently, the use of special functions expansions (polynomials, wavelet bases, elementary orthogonal functions, etc.) yielded interesting results. In the particular domain of non-linear systems behaviour identification [21–23], the works of Masri and Caughey [20], Ghanem and Romeo [21,22] and Horng and Chou [23] gave an important contribution to expansion methods.

In this paper, a polynomial expansion scheme is proposed for identifying a coupled linear-non-linear oscillating system. The advantage of the used method lies in yielding continuous, infinitely integrable and differentiable solutions.

2. Problem presentation

The studied system consists of two coupled oscillators (Fig. 1). The first oscillator is defined by the parameters

Mmassk1spring 1 stiffness coefficient

ABSTRACT

Differential equations governing mechanical system behaviours have to be transformed into algebraic equations using the appropriate analytical and numerical tools. This study is concerned with the identification of a non-linear 2-degree-of-freedom mechanical system using the Boubaker polynomials expansion scheme (BPES). Solutions are plotted in the frequency–energy plane and are compared to other results published so far.

© 2010 Elsevier Ltd. All rights reserved.

- *h*₁ damping coefficient
- x t-dependent position mass

The second oscillator is defined by the parameters

- m mass
- *k*₂ spring 2 stiffness
- *h*₂ damping coefficient
- *y t*-dependent position

The non-linearity is expressed by the additional binding term $\Delta \overline{F}$

$$\left|\Delta \vec{F}\right| = \left|k_2(x(t) - y(t)^3)\right|$$

The dynamic behaviour of this 2-DOF mechanical system is governed [24–26] by the following coupled equations:

$$\begin{cases} M\dot{x}(t) + h_1(\dot{x}(t) - \dot{y}(t)) + k_1(t) + k_2(x(t) - y(t))^3 = 0 \\ m\ddot{y}(t) + h_2(\dot{y}(t) - \dot{x}(t)) + k_2(y(t) - x(t))^3 = 0 \\ x(t)|_{t=0} = x_0; \quad \dot{x}(t)|_{t=0} = 0; \\ x(t)|_{t=0} = x_0; \quad \dot{x}(t)|_{t=0} = 0 \end{cases}$$
(1)

For simplification purposes, system (1) is first simplified to

$$\begin{cases} \ddot{x}(t) + \frac{h_1}{M} \dot{x}(t) + \frac{h_2}{M} (\dot{x}(t) - \dot{y}(t)) + \frac{4\pi^2}{T_0^2} x(t) + \Lambda (x(t) - y(t))^3 = 0\\ r \times \ddot{y}(t) + \frac{h_2}{M} (\dot{y}(t) - \dot{x}(t)) + \Lambda (y(t) - x(t))^3 = 0\\ r = (m/M); \quad \Lambda = (k_2/M), \ T_0 = 2\pi \sqrt{M/k_1} \end{cases}$$
(2)

E-mail address: zhangdahong2003@yahoo.cn

^{0020-7462/\$ -} see front matter \circledcirc 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijnonlinmec.2010.11.005