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Motivated by applications to seed germination, we consider the transverse deflection that results from

the axisymmetric indentation of an elastic membrane by a rigid body. The elastic membrane is fixed

around its boundary, with or without an initial pre-stretch, and may be initially curved prior to

indentation. General indenter shapes are considered, and the load–indentation curves that result for a

range of spheroidal tips are obtained for both flat and curved membranes. Wrinkling may occur when

the membrane is initially curved, and a relaxed strain-energy function is used to calculate the deformed

profile in this case. Applications to experiments designed to measure the mechanical properties of seed

endosperms are discussed.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An elastic shell may be defined as a three-dimensional elastic
body with one dimension that is much thinner than the other two
[18]. This enables us to consider the deformation of only the mid-
plane of the elastic body in this thinner direction. A membrane
may then be defined as a shell which has negligible resistance to
bending [18,12]. Elastic membranes are commonly found in
biological and engineering contexts, where they may span rela-
tively large areas despite having little volume or weight [11].

There are two different classes of non-linear elastic membrane
theories and we refer to Haughton [7] for a more complete
comparison of the two theories, but give a brief description here.
The first of these membrane theories may be called a ‘membrane-
like shell’ [18], which takes the shell theory of three-dimensional
elasticity and introduces the membrane assumption of no stress
in the direction normal to the membrane. In this formulation the
thickness is included in the derivation, as the principal stretch in
the thickness direction, ln, appears in the governing equations,
which explicitly allows the membrane to get thinner to conserve
mass when the constraint of incompressibility is imposed. This is
a common method of treating membranes, and a comprehensive

derivation may be found in Libai and Simmonds [18] and
Steigmann [38]. A variational treatment may also be considered,
for example see Le Dret and Raoult [15].

The second class of membrane theories occurs from consider-
ing the mid-plane of the membrane as a two-dimensional sheet of
elastic material embedded in three-dimensional space, entirely
neglecting thickness effects through the membrane [16]. Nadler
and Rubin [22] call this a ‘simple membrane’, and a consequence
of this reduction is that the stretch through the membrane is not
included in the formulation. The deformation gradient is then
two-dimensional, and there are only two strain invariants and
two principal stretches, rather than the three that arise in the
three-dimensional theory, see Steigmann [36,39] for details.

It has been shown that the simple membrane and membrane-like
shell approaches give the same governing equations to leading order
[26,7,38], and it is the specification of the constitutive behaviour
which varies between the two theories. It is possible to define two-
dimensional strain-energy functions which have no counterpart in
the three-dimensional theory, as discussed by Haughton [7], as well
as to use three-dimensional strain-energy functions in the two-
dimensional theory. Further details of such matters may be found in
Libai and Simmonds [18] and Steigmann [38].

When considering membrane deformations using either of the
above theories, it is important to ensure that the membrane is in a
state of tension, with both principal stresses remaining positive
throughout the deformation [18]. If compressive (negative) stres-
ses occur then the membrane may wrinkle, a local buckling event
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