
Email FI identification and resolution with model checking

André Vicente Calvinho a,1, Rui Gustavo Crespo b,�

a Military Academy, Rua Gomes Freire, 1169-203 Lisboa, Portugal
b INESC-ID/Technical University of Lisbon, DEEC Av. Rovisco Pais, 1049-001 Lisboa, Portugal

a r t i c l e i n f o

Article history:

Received 12 July 2010

Received in revised form

12 February 2011

Accepted 10 March 2011
Available online 16 March 2011

Keywords:

Email features

Feature interaction

Feature resolution

Feature interdiction

Model checking

a b s t r a c t

Internet applications, such as Email, VoIP and WWW, have been enhanced with features. However, the

introduction and modification of features may result in undesired behaviors, and this effect is known as

feature interaction (‘‘FI’’). Among other methods, constraint logic programming and model checking

have been adopted to address the two main problems in telephony FIs: detection and resolution.

In this paper, we show that model checking is also suitable to detect FIs in more complex domains

and we use Email features as an example. Moreover, FI detection may be simultaneously analyzed by

model checking tools.

Finally, we analyze the implementation performance against a number of parties and message types

using the CPAchecker tool. Model checking reveals a superior performance against constraint

programming, for the case of FI detection with FI occurrence.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, many Internet applications have been enhanced
with several features. The problem occurs when some of these
features, working fine alone, interact. That problem is known as
feature interaction, or FI for short. FIs have been observed in
several Internet applications, such as Electronic mail (‘‘Email’’)
(Hall, 2000), World Wide Web (‘‘WWW’’) (Weiss, 2003) and Voice
over IP (‘‘VoIP’’) (Lennox and Schulzrinne, 2000).

Examples 1.1, 3.3 and 3.4 depict three Email feature
interactions.

Example 1.1. Suppose that Alice subscribes to the feature For-
wardMessage, as well as Bob, and each feature is configured to
forward messages to each other. When a party receives a
message, that message will bounce between the two parties
forming a loop cycle. This is an undesirable behavior.

Despite the unexpected results, users must decide if FIs
represent undesirable interactions, or not. For example, the
WWW Refresh feature forms a loop to itself. However, if the
web page depicts a clock, Refresh becomes an acceptable
interaction.

The increasing number of FIs, and the inconvenience they are
causing, led industry and researchers to meet regularly at the

Feature Interactions in Telecommunications and Software Sys-
tems conferences, 10 of which have been held from 1992 to 2009.

Three basic problems have been studied (Bouma and Velthuijsen,
1994): avoidance, detection and resolution. Avoidance means to
intervene at the protocol or design stages to prevent FIs, before
features are executed. Due to the distributive characteristic of
Internet, where every node is unaware of features subscribed by
other users, avoidance is not considered here. Detection aims at the
identification of FIs, with suitable methods. In the resolution, actions
are exercised runtime over triggered features, which averts FIs.

In this paper we focus on Email FI detection and resolution, with
particular interest on the 10 most widely known features (Hall, 2000).

1.1. FI detection approaches

Calder et al. (2003) showed how programming languages, such
as Promela (Calder and Miller, 2001), CSP (Hoare, 1978) and
LOTOS (Gorse et al., 2006), may be used to specify features.
Methods explored so far in FI detection include simulation
(Thomas, 1997), model checking (Plath and Ryan, 2000; Calder
and Miller, 2001), theorem proving (Gammelgard and Kristensen,
1994) and prediction (Crespo, 2008).

In this paper we adopt model checking approach. Model
checking deals with the verification of temporal properties over
program models (Baier and Katoen, 2008). Model checking tools
generate an output that indicates if the program is safe or not. If
the program is unsafe, the outcome is complemented with a
counter-example.

To specify feature specifications, we adopted C language
(Kernighan and Ritchie, 1978), because it is the choice language

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

1084-8045/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jnca.2011.03.027

� Corresponding author. Tel.: þ351 21 8417626; fax: þ351 21 8417 499.

E-mail addresses: andrecalvinho@gmail.com (A.V. Calvinho),

R.G.Crespo@comp.ist.utl.pt (R.G. Crespo).
1 Fax: þ351 213186988.

Journal of Network and Computer Applications 34 (2011) 1441–1446

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2011.03.027
mailto:andrecalvinho@gmail.com
mailto:R.G.Crespo@comp.ist.utl.pt
dx.doi.org/10.1016/j.jnca.2011.03.027



