On Explicit Substitution with Names

Kristoffer H. Rose · Roel Bloo · Frédéric Lang

Received: 4 February 2011 / Accepted: 8 February 2011 / Published online: 11 March 2011 © Springer Science+Business Media B.V. 2011

Abstract This paper recounts the origins of the λx family of calculi of explicit substitution with proper variable names, including the original result of preservation of strong β -normalization based on the use of synthetic reductions for garbage collection. We then discuss the properties of a variant of the calculus which is also confluent for "open" terms (with meta-variables), and verify that a version with garbage collection preserves strong β -normalization (as is the state of the art), and we summarize the relationship with other efforts on using names and garbage collection rules in explicit substitution.

Keywords Explicit substitution • Preservation of strong normalization • Confluence • Open terms

1 Introduction

The λ calculus [11] permits substitution of all free variables with a copy of a term as an atomic operation. However, it was always clear that, if used as a programming language construct, it should be assigned an operational complexity related

K. H. Rose (🖂)

R. Bloo

F. Lang INRIA Grenoble Rhône-Alpes/LIG, 655, Av. de l'Europe, Montbonnot, 38334 Saint-Ismier Cedex, France e-mail: Frederic.Lang@inria.fr

IBM Thomas J. Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598, USA e-mail: krisrose@us.ibm.com

Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands e-mail: c.j.bloo@tue.nl