Characterization of High-*k* Gate Dielectric with Amorphous Nanostructure

ALI BAHARI¹ and REZA GHOLIPUR^{1,2}

1.—Department of Physics, University of Mazandaran, 4741695447 Babolsar, Iran. 2.—e-mail: gholipur.reza@gmail.com

In the present study, $Zr_xLa_{1-x}O_y$ amorphous nanostructures were prepared by the sol-gel method such that the Zr atomic fraction (x) ranged from 0% to 70%. An analytical model is described for the dielectric constant (k) of $Zr_xLa_{1-x}O_y$ nanostructures in a metal-oxide-semiconductor (MOS) device. The structure and morphology of $Zr_xLa_{1-x}O_y$ film was studied using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. Elemental qualitative analysis was performed using energy-dispersive x-ray spectra and a map that confirmed the findings. Preliminary information on the influence of thermal annealing on the morphological control of $Zr_xLa_{1-x}O_y$ amorphous nanostructures is presented. The dielectric constant of the crystalline $Zr_{0.5}La_{0.5}O_y$ thin film is about 36. Electrical property characterization was performed using a metal-dielectricsemiconductor structure via capacitance-voltage and current density-voltage measurements.

Key words: CMOS, nanostructures, high-k dielectric, sol-gel method

INTRODUCTION

The rapid progress of complementary metal– oxide–semiconductor (CMOS) integrated circuit technology has enabled the Si-based microelectronics industry to simultaneously meet several technological requirements for the expansion of the fuel market. These requirements are performance (speed), low static (off-state) power, and large power supply and output voltages.^{1–3} This was accomplished by developing the ability for calculated reduction of the dimensions of fundamental active devices such as field-effect transistors (FETs) in the circuits.^{4–6}

It can be argued that the key element enabling scaling of a Si-based metal–oxide–semiconductor FET is the material (and resultant electrical) properties associated with the dielectric employed to isolate the transistor gate from the Si channel in CMOS devices.^{7–9} The current CMOS gate dielectric SiO₂ thickness can scale to at least 13 Å, which corresponds to only a four- to five-atom layer, but

several problems must be overcome during this process. $^{10-12}$ These include dielectric thickness variation, direct tunnel current, penetration of impurities from the gate into the gate dielectric, and the reliability and lifetime of devices made with these films. $^{13-15}$

The physical limitations imposed by SiO_2 have led researchers to study different materials that may comply with the three major requirements of high crystallization temperature, wide energy bandgap, and high dielectric constant.¹⁴ New alternative materials with higher k values than that of SiO_2 (3.9) are needed to form thicker gate dielectrics to achieve the required capacitance. Y_2O_3 , ¹⁶ Al_2O_3 , ¹⁷ Ta_2O_5 , ¹⁸ Gd_2O_3 , ^{19,20} HfO_2 , ²¹ $SrTiO_3$, ²² ZrO_2 , ^{23,24} and $La_2O_3^{25,26}$ have received considerable attention as the gate oxide thickness of MOS devices is scaled down.^{21,25} Use of an amorphous, high-k material as a gate dielectric offers several key advantages for CMOS processing. These include a (thermodynamically and electrically) stable, high-quality Si-MO₂ interface, a decrease in leakage current according to the Poole–Frenkel emission model, ¹⁴ and superior electrical isolation properties.

⁽Received December 15, 2012; accepted September 7, 2013; published online October 16, 2013)