The Virtual Continuous TEG Model: Efficient Optimization of Thermogenerators

J. KITTE,^{1,2} F. BECK,¹ and D. JÄNSCH¹

1.—Division Development Advanced, IAV GmbH, Carnotstr. 1a, 10587 Berlin, Germany. 2.—e-mail: jens.kitte@iav.de

Dimensioning a thermoelectric generator for vehicle applications poses major challenges. Besides the fundamental process of determining the layout, an optimization procedure is necessary to harness the maximum potential from a thermoelectric system under given boundary conditions. The thermal boundary conditions encountered in this application are not constant. In this context, a multichannel thermogenerator shows benefits by distributing individual mass flows in relation to the operating point maximizing power output across the entire range of operating points. The innovative approach underlying the continuous thermogenerator model supports the process of global optimization. The parameters to be optimized are configured as dimensionless variables. The model not only guarantees very short computation times but also maintains high quality. The optimization method is presented in detail using an example of searching for an optimum material layout, variable fin geometry, and variable leg height across and along the direction of gas flow. The materials or material combinations to be analyzed are lead and bismuth telluride. The heat exchanger has a reference geometry. The article describes the combination of dimensionless optimization parameters that provides the greatest increase in thermoelectric power output compared with the basic concept. The discussion concludes with a cost-benefit analysis of the measures chosen.

Key words: Continuous model, multichannel thermogenerator, optimization, thermoelectric material segmentation

Nomonalatura

nomen			
Ar	Ratio of cross-sectional area between n - and p -type legs	${ m d}{P}_{ m el} \ \Delta {P}_{ m el}$	Differential electrical power Difference electrical power
H'_r	Enthalpy flow in gas channel	qn, qp	Ratio of material segmentation of <i>n</i> - and
Ĩ	Electrical current		p-legs
$l_{\rm s}$	Sum of length of TE-leg and the gap	$R_{ m th,tot}$	Total thermal resistance
	between the two legs	$R_{ m th,TE}$	Thermal resistance of thermoelectric
$n_{\rm v}$	Number of pairs of TE-legs across the		material
0	direction of gas flow	r_{\min}	Minimum value of optimization function
R_x	Total electrical resistance	$r_{\rm max}$	Maximum value of optimization
$\mathrm{d}R_x$	Differential electrical resistance		function
$\mathrm{d}Q'_{\mathrm{wallx}}$	Differential thermal flow into heat	r_0	Boundary value of optimization
wanz	exchanger wall	8	Fin density
$\mathrm{d}Q_\mathrm{F}'$	Differential Fourier flow	$T_{\text{source }x}$	Temperature of heat source at inlet of
$\mathrm{d}Q_{\mathrm{J}}^{\dagger}$	Differential Joule flow		heat exchanger
$\mathrm{d}Q_\mathrm{P}^{\check{\prime}}$	Differential Peltier flow	$T_{\mathrm{sink}\ x}$	Temperature of heat sink
$P_{\rm el}$	Electrical power	$T_{\mathrm{h}x}$	Temperature of hot surface of
			thermoelectric material along gas flow
		T_{cx}	Temperature of cold surface of
(Received July 8, 2012; accepted April 13, 2013;			thermoelectric material along gas flow

(Received July 8, 2012; accepted April 13, 2013; published online June 11, 2013)