Percolation Conduction in Hybrid Thermoelectric Material Consisting of Bi_{0.88}Sb_{0.12} and Barium Ferrite Particles

VAN LAM DO,¹ TOMOKI ARIGA,¹ KOUHEI TAKAHASHI,¹ KOICHIRO SUEKUNI,¹ and MIKIO KOYANO^{1,2,3}

1.—School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan. 2.—Green Devices Research Center, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan. 3.—e-mail: koyano@jaist.ac.jp

A hybrid material consisting of thermoelectric Bi_{0.88}Sb_{0.12} and Ba ferrite Bi_{0.88}Sb_{0.12}(BaFe₁₂O₁₉)_x (x = 0, 0.025, 0.04, and 0.08) was synthesized using sintering. Powder x-ray diffraction patterns and scanning electron microscopy images of the hybrid indicate that the BaFe₁₂O₁₉ particles were well distributed in the host Bi_{0.88}Sb_{0.12} phase. The temperature dependence of the electrical resistivity ρ of the host Bi-Sb exhibits metallic behavior. By the addition of Ba ferrite particles, the ρ at 300 K increases intensively, and ρ (T) then behaves similarly to a semiconductor. However, it is noted that the thermoelectric power S is unchanged. Inhibition of current and heat flows by a restricted conduction path and the unchanged electromotive force generated by the Seebeck effect in the conduction path can be understood based on a site-percolation model consisting of conducting Bi-Sb and insulating Ba ferrite. The critical volume fraction p_c of this system was estimated experimentally as $p_c = 0.68$.

Key words: Thermoelectric, bismuth-antimony, magnetic particle, hybrid, percolation

INTRODUCTION

Thermoelectric (TE) technology enables direct conversion between thermal and electric energy based on the Seebeck or Peltier effect.^{1,2} Therefore, a TE device can be used as an electric power generator using waste heat from blast furnaces, automobiles, or distributed natural heat. Furthermore, such generators can create electricity from so-called cold heat, such as that from a liquefied natural gas (LNG) vaporizer.³ Conversion using cold heat requires that the material show, at low temperatures, high TE performance determined by the dimensionless figure of merit

$$ZT = \frac{S^2}{\rho\kappa}T,$$

(Received July 5, 2012; accepted December 28, 2012; published online February 9, 2013)

where S represents the thermoelectric power, ρ denotes the electrical resistivity, κ stands for the thermal conductivity, and T signifies the absolute temperature.

Bismuth-antimony (Bi-Sb) alloys, which are *n*-type conductors, exhibit good TE performance at low temperatures around 100 K.⁴⁻⁹ The electrical properties of $\text{Bi}_{1-y}\text{Sb}_y$ depend on the Sb concentration *y*. In the Bi-rich range of y < 0.05, $\text{Bi}_{1-y}\text{Sb}_y$ is a semimetal because the conduction bands at L-points overlap the valence bands at T-points. In the range of 0.05 < y < 0.22, the alloys are semiconductors because of the existence of a band gap. For y > 0.22, the H-hole band goes up in energy and overlaps with the L band so that the alloy turns into a semimetal again. The maximum energy gap is approximately 20 meV at y = 0.12.^{10–12} It is noteworthy that the *ZT* of this material is greatly enhanced on application of a magnetic field.^{5,13,14} Remarkably, *ZT* reaches approximately 1.1 under a 0.3 T magnetic field.⁵