Investigation of Trap States in Mid-Wavelength Infrared Type II Superlattices Using Time-Resolved Photoluminescence

BLAIR C. CONNELLY,^{1,3} GRACE D. METCALFE,¹ HONGEN SHEN,¹ MICHAEL WRABACK,¹ CHADWICK L. CANEDY,² IGOR VURGAFTMAN,² JOSEPH S. MELINGER,² CHAFFRA A. AFFOUDA,² ERIC M. JACKSON,² JILL A. NOLDE,² JERRY R. MEYER,² and EDWARD H. AIFER²

1.—U.S. Army Research Laboratory, RDRL-SEE-M, 2800 Powder Mill Road, Adelphi, MD 20783, USA. 2.—U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA. 3.—e-mail: blair.connelly.ctr@mail.mil

Time-resolved photoluminescence (TRPL) spectroscopy is used to study the minority-carrier lifetime in mid-wavelength infrared, *n*-type, InAs/Ga_{1-x}In_xSb type II superlattices (T2SLs) and investigate the recombination mechanisms and trap states that currently limit their performance. Observation of multiple exponential decays in the intensity-dependent TRPL data indicates trap saturation due to the filling then emptying of trap states and different Shockley–Read–Hall (SRH) lifetimes for minority and majority carriers, with $\tau_{\rm maj}(\tau_{n0}) \gg \tau_{\rm min}(\tau_{p0})$. Simulation of the photoluminescence transient captures the qualitative behavior of the TRPL data as a function of temperature and excess carrier density. A trap state native to $Ga_{1-x}In_xSb$ is identified from the low-injection temperature-dependent TRPL data and found to be located below the intrinsic Fermi level of the superlattice, approximately 60 ± 15 meV above the valence-band maximum. Low-temperature TRPL data show a variation of the minority-carrier SRH lifetime, τ_{p0} , over a set of InAs/Ga_{1-x}In_xSb T2SLs, where τ_{p0} increases as x is varied from 0.04 to 0.065 and the relative layer thickness of $Ga_{1-x}In_xSb$ is increased by 31%.

Key words: Type II superlattice, minority-carrier lifetime, time-resolved photoluminescence, Shockley–Read–Hall, trap saturation, infrared

INTRODUCTION

Type II superlattice (T2SL) technology has the potential to surpass existing materials for use in mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) photodetectors.¹ The ability to engineer the bandgap promises low Auger recombination rates.² In practice, however, InAs/ $Ga_{1-x}In_xSb$ T2SL material is limited by Shockley–Read–Hall (SRH) recombination,^{3–5} resulting in short minority-carrier lifetimes (tens of nanoseconds at 77 K) that do not approach the theoretical limit determined by Auger recombination. A number of studies have been carried out to determine

the source of the SRH recombination center, including investigating the influences of varying the number of superlattice interfaces per unit length,⁶ surface recombination with varying absorber width,⁷ absorber doping level,⁸ and interface type.⁸ In each study, the varied superlattice parameter was found to have a negligible effect on the observed carrier lifetime. Therefore, it is postulated that a native defect in one of the superlattice constituents (InAs or $Ga_{1-x}In_xSb$) is the source of the dominant SRH recombination center.⁹ Recent measurements of "Ga-free" InAs/InAs_{1-x}Sb_x T2SLs demonstrated an order-of-magnitude improvement in nonradiative carrier lifetime when Ga was eliminated.^{10,11} These results suggest that the SRH trap(s)limiting the carrier lifetime in $InAs/Ga_{1-x}In_xSb$ T2SLs is native to the $Ga_{1-x}In_xSb$ layers. As the

⁽Received December 21, 2012; accepted August 23, 2013; published online September 25, 2013)