Effects of H₂O Pretreatment on the Capacitance–Voltage Characteristics of Atomic-Layer-Deposited Al₂O₃ on Ga-Face GaN Metal–Oxide–Semiconductor Capacitors

XIANG LIU,^{1,2} RAMYA YELURI,¹ JING LU,¹ and UMESH K. MISHRA¹

1.—Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA. 2.—e-mail: xliu@ece.ucsb.edu

Atomic layer deposition (ALD) of Al_2O_3 on Ga-face GaN is studied with respect to the effects of growth saturation, precursor injection sequence, and H_2O pretreatment. A metal-oxide-semiconductor capacitor (MOSCAP) structure is fabricated to measure the capacitance-voltage (*C*-*V*) characteristics. The origin of *C*-*V* hysteresis is explained by a model considering the different trapping behaviors of interface states and oxide border traps. The interface state density (D_{it}) is extracted as a function of band bending using an ultraviolet (UV)-assisted method. It is found that H_2O pretreatment followed by saturated ALD growth produces the best interface quality, with a reduced D_{it} compared with growth without H_2O pretreatment.

Key words: GaN, Al₂O₃, atomic layer deposition, interface states, traps, hysteresis, MOSCAP

INTRODUCTION

 Al_2O_3 has emerged as a suitable gate dielectric for III-nitride-based electronic devices.¹⁻¹⁰ It has a large bandgap and relatively high dielectric constant, and exhibits high thermal and structural stabilities. Al_2O_3 can also be used as a passivation material to improve device output performance.^{1-3,7,9,11} The passivation effects are often seen to be better than with the widely used SiN.^{1,11} For both applications it is essential to have a low interface state density (D_{it}) between Al_2O_3 and III-nitride semiconductor, and a low oxide trap density within Al_2O_3 itself.

Due to the great chemical versatility and the exceptional control over film uniformity and conformity, atomic layer deposition (ALD) has become the predominant method for depositing $Al_2O_3^{12-17}$ and various other dielectrics. In typical thermal ALD of Al_2O_3 , trimethylaluminum (TMA) and H_2O precursors are introduced alternately. Each half-cycle reaction is driven by the respective surface chemistry,¹² limiting growth to proceed in a layer-by-layer

fashion. Saturated growth is usually preferred in order to get the maximum growth rate and incorporation efficiencies, as well as better run-to-run consistencies. To achieve a low- D_{it} interface at the initial stage of growth, the precursor injection sequence needs to be designed carefully by considering the surface termination and chemical properties of the underlying semiconductor.^{15–17} For example, a TMA pretreatment step is found to reduce D_{it} in ALD of Al₂O₃ on As-terminated InGaAs.¹⁵ The As termination favors TMA adsorption and passivation,¹⁶ and prefers the formation of Al–As bonds for the first layer growth.¹⁷ On the other hand, for ALD of Al₂O₃ on Ga-face GaN, it might be advantageous to use H₂O pretreatment and passivate the surface with H₂O adsorption.^{1,3}

The Terman method is a standard high-frequency capacitance-voltage (C-V) technique for analyzing D_{it} .^{18,19} It relies on the interface states to change occupancy along with the direct-current (DC) bias sweep. By making a point-by-point comparison between a measured C-V curve containing responses from the interface states and a calculated ideal reference curve assuming no interface states, D_{it} can be extracted as a function of band bending. However, the Terman method can grossly

⁽Received May 15, 2012; accepted August 26, 2012; published online October 6, 2012)