Thermoelectric Performance of Multiple-Doped $Co_4Sb_{12-x-y-z}Ge_xTe_yS_z$ Skutterudite Compounds

BO DUAN, 1 PENGCHENG ZHAI, 1,2 LISHENG LIU, 1 GANG CHEN, 1 PENG LI, 1 and QINGJIE ZHANG 1

1.—State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. 2.—e-mail: pczhai@126.com

 $CoSb_3$ skutterudites multiply doped with Ge, Te, and S were synthesized by solid-state reaction and spark plasma sintering. x-Ray diffraction studies revealed that Ge, Te, and S entered the lattice of the $CoSb_3$ compounds, and while Te increased the lattice volume, Ge and S decreased it. Compared with the undoped and single-doped $CoSb_3$ compounds, the thermal conductivity and lattice thermal conductivity are significantly suppressed due to greatly increased point defect scattering. It is found that S is more effective for decreasing the lattice thermal conductivity than Te and Ge. The highest thermoelectric figure of merit, *ZT*, exceeds 1.1 for the $Co_4Sb_{11.25}Ge_{0.05}Te_{0.63}S_{0.07}$ compound at 800 K.

Key words: Skutterudite, doping, thermal conductivity

INTRODUCTION

The efficiency of a thermoelectric material is determined by its dimensionless figure of merit, $ZT = \alpha^2 \sigma T/\kappa$, where *T* is the absolute temperature and α , σ , and κ are the Seebeck coefficient and the electrical and thermal conductivity of the material, respectively. Therefore, good thermoelectric materials have large α , high σ , and low κ .¹

Skutterudite materials based on CoSb_3 are promising thermoelectric materials for applications in refrigeration and power generation.^{2,3} Unfortunately, the thermal conductivity of binary skutterudites is relatively high compared with other thermoelectric materials;^{3,4} Caillat et al.⁵ reported that the roomtemperature thermal conductivity of CoSb_3 was as high as 11 W m⁻¹ K⁻¹. Therefore, much research has been focused on reducing the thermal conductivity of skutterudites. It has been demonstrated that filling the Sb-dodecahedron voids in CoSb_3 with atoms, such as rare earth elements, alkalines, and alkaline earth metals, can effectively decrease the thermal conductivity and enhance the *ZT* values.^{6–9} Shi et al.⁷ introduced three elements (Ba, La, and Yb) into the nanocages of CoSb₃ and found that the electrical and thermal transport can be optimized in a relatively independent way, leading to a continual increase of the ZT values. Formation of solid solutions between isostructural compounds is another effective approach for reducing the thermal conductivity by increasing point defect scattering.¹⁰ So far, many studies have reported on synthesis and characterization of CoSb₃-based skutterudites substituted at Sb-site with semimetal, such as Te, Se, Ge, etc. Among all the single-substituted skutterudites reported to date, $Co_4Sb_{12-x}Te_x$ compounds show the highest thermoelectric performance due to the extremely enhanced power factors $(\alpha^2 \sigma)$ and the reduced thermal conductivity.^{11,12} In Ge-Te or Sn-Te codoping, Ge and Sn elements, with fewer valence electrons than the host element, can extend the solubility of Te in $Co_4Sb_{12-x}Te_x$ compounds as charge-compensating elements and decrease the thermal conductivity more significantly than the electrical conductivity.^{13–15} In our previous study,¹⁶ we found that S could also enter the lattice of $CoSb_3$ when codoped with element Te, and that the thermal conductivity was reduced significantly and a maximum $Z \check{T} \sim 1.08$ was also achieved for the Co₄Sb_{11.3}Te_{0.6}S_{0.1} compound.

In this work, we investigate the effects of multiple doping on the thermoelectric properties of

⁽Received July 6, 2012; accepted September 25, 2012; published online October 17, 2012)