Vibrational Spectroscopy of Na–H Complexes in ZnO

NARENDRA S. PARMAR, 1,2 MATTHEW D. MCCLUSKEY, 1,3 and KELVIN G. LYNN 1,2

1.—Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814, USA. 2.—Center for Materials Research, Washington State University, Pullman, WA 99164-2711, USA. 3.—e-mail: mattmcc@wsu.edu

Sodium acceptors were diffused into ZnO bulk single crystals to a depth of $\sim 1~\mu m$, with a near-surface concentration of $\sim 10^{18}~{\rm cm}^{-3}$. An O–H local vibrational mode (LVM) was observed at 3304 cm $^{-1}$, at a temperature of 9 K, in hydrogenated samples. The LVM is attributed to an O–H bond-stretching mode adjacent to a Na acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2466 cm $^{-1}$. The isotopic frequency ratio is similar to values found in other hydrogen complexes. In the deuterated sample, a sideband at 2461 cm $^{-1}$ is attributed to a Fermi resonance.

Key words: ZnO, infrared, acceptor, SIMS

Demand for white light-emitting diodes (LEDs),¹ high-power solid-state emitters, and lasers for use in displays, illumination, and optical storage has fueled research on wide-bandgap semiconductors. GaN, with a 3.42 eV bandgap at room temperature,² is a preferred material for optoelectronic applications. Wurtzite zinc oxide (ZnO), a wide-bandgap semiconductor with a 3.37 eV direct gap at room temperature,³ has emerged as a possible competitor. ZnO has several potential advantages over GaN. With a 60 meV exciton binding energy,⁴ ZnO is a more efficient emitter than GaN (25 meV exciton binding energy) at room temperature. Large ZnO wafers can be purchased for epitaxial growth, and wet chemical processing is straightforward. A problem with ZnO is that, while it can easily be made *n*-type, it is difficult to dope *p*-type in a reliable and controlled way. There are several reports on p-type doping with group IA and group V elements.^{5–7} However, reproducibility and reliability of *p*-type doping remain controversial.^{8,9} Recent theoretical^{10,11} and experimental¹² studies

Recent theoretical^{10,11} and experimental¹² studies showed that nitrogen is a deep acceptor, with a level ~ 1.3 eV to 1.7 eV above the top of the valence band, and is therefore unsuitable for *p*-type doping. Sodium is a potential acceptor dopant in ZnO. In addition to behaving as deep acceptors, Meyer et al.¹³ reported that Li and Na, incorporated either by diffusion or during thin-film growth, can also result in relatively shallow acceptors. Several other groups have reported first-principles calculations for column IA impurities (Li, Na, and K) in ZnO.^{14,15} Park et al.¹⁶ performed calculations for substitutional Li, Na, and K in ZnO, reporting ionization energies of 0.09 eV, 0.17 eV, and 0.32 eV, respectively. Du and Zhang,¹⁷ using hybrid densityfunctional calculations, found acceptor levels near 0.3 eV for Li and Na.

In the present study, sodium acceptors and sodium-hydrogen complexes were investigated experimentally. Melt-grown cermet ZnO single crystals¹⁸ were used in this work. Alkali-metal dispensers from SAES Advanced Technology were used as the alkali-metal source. The alkali-metal-generating material is a mixture of an alkali-metal chromate with a reducing agent. The chromates used were anhydrous alkali-metal salts of chromic acid with general formula Me_2CrO_4 , where Me denotes an alkali metal (Li, Na, K, Rb or Cs). Sodium dispensers of 50 mm slit length with 6 mg cm⁻¹ yield were used for sodium doping.

Before solium diffusion, ZnO crystals were annealed in oxygen at 900°C for 30 h in a sealed silica ampoule that was evacuated and baked. The oxygen pressure was \sim 200 torr at room temperature prior to sealing the ampoule. Selim et al.¹⁹ showed that zinc vacancies are created by oxygen

⁽Received May 30, 2013; accepted August 9, 2013; published online August 29, 2013)