Effect of Initial Bulk Material Composition on Thermoelectric Properties of Bi₂Te₃ Thin Films

A. V. BUDNIK, ¹ E. I. ROGACHEVA, ^{1,3} V. I. PINEGIN, ¹ A. YU. SIPATOV, ¹ and A. G. FEDOROV²

1.—National Technical University "Kharkov Polytechnic Institute", 21 Frunze St., Kharkov 61002, Ukraine. 2.—Institute for Scintillation Materials NAS of Ukraine, Kharkov, Ukraine. 3.—e-mail: rogachova.olena@gmail.com

 V_2VI_3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ , Hall coefficient $R_{\rm H}$, charge carrier mobility $\mu_{\rm H}$, and TE power factor $P = S^2 \sigma$ of Bi₂Te₃ thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi₂Te₃ crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures $T_{\rm S}$ of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in $T_{\rm S}$ leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in $S, R_{\rm H}, \mu_{\rm H}, \sigma$, and *P*. The room-temperature maximum values of *P* for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are $P = 7.5 \times 10^{-4}$ W/K² m and 35×10^{-4} W/K² m, respectively. Thus, by using Bi₂Te₃ crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.

Key words: Bi_2Te_3 thin films, bulk material, stoichiometry, substrate temperature, thermoelectric properties

INTRODUCTION

 Bi_2Te_3 semiconductor compound and Bi_2Te_3 based solid solutions are among the best lowtemperature thermoelectric (TE) materials, being widely applied in TE devices of different types.^{1,2} Broad prospects for practical applications of lowdimensional structures stimulate study of bismuth telluride in the thin-film state.

 Bi_2Te_3 films can be obtained by different methods, such as molecular-beam epitaxy, magnetron sputtering,

hot-wall epitaxy, liquid-phase epitaxy, laser evaporation, thermal evaporation from a single or from two sources, electrochemical deposition, and others.^{3–9} Improvements in the technology of Bi₂Te₃ film preparation for TE applications are aimed at enhancing the dimensionless TE figure of merit $ZT = S^2 \sigma T / \lambda$ (S is the Seebeck coefficient, σ is the electrical conductivity, λ is the thermal conductivity, and T is the absolute temperature) and TE power factor $P = S^2 \sigma$, which determine the efficiency of TE materials.

One of the simplest low-cost methods for thin-film preparation is thermal evaporation in vacuum from a single source. However, the main deficiency of this method is limited control over the deposition process.

⁽Received July 8, 2012; accepted December 28, 2012; published online February 7, 2013)