## 7th International Conference on Science and Development of Nanotechnology



## The effects of biogenic bismuth oxide nanoparticles on radiosensitivity of gastric cancer cells

Fatemeh B. Masoudi, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran Mansour Mashreghi<sup>1</sup>, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, , Iran, . Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, , Iran, Nano Research Center, Ferdowsi University of Mashhad, Mashhad, , Iran

Fatemeh B. Rassouli, Novel Diagnostic and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran Hamid Gholamhosseinian, Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Ali Nakhaie Pour, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, , Iran

## Abstract

Gastric cancer is the 5th most common neoplasm and the 3rd most deadly cancer worldwide. In this study, we produced bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>) and bismuth oxide-zeolite nanocomposites (Bi<sub>2</sub>O<sub>3</sub>-Z NCs) using *Vibrio* sp. *VLC* bacteria and investigated their effects on radiosensitivity of human gastric cancer cells.

After synthesis of  $Bi_2O_3$  NPs and  $Bi_2O_3$ -Z NCs by *Vibrio* sp. *VLC* bacteria, the characterization of NPs were evaluated using UV-visible, FTIR, XRD, DLS, Zeta potential, TEM and FESEM. Then, MKN-45 cells, a human gastric adenocarcinoma cell line, were pretreated with 25 µg/ml  $Bi_2O_3$  NPs (in two forms of heated and non-heated) and  $Bi_2O_3$ -Z NCs, while bismuth salt and zeolite were considered as controls. After 24 h, cells were exposed to 200, 400 and 600 centigray (cGy) of X-radiation and recovered for 72 h. At the end, viability of cells was determined by resazurin assay.

Findings of present research indicated that  $Bi_2O_3$  NPs (non-heated) as well as bismuth salt and zeolite pretreatments increased the effects of 200 cGy radiation. Moreover,  $Bi_2O_3$  NPs (heated) significantly (p < 0.05) improved the sensitivity of MKN-45 cells to 400 cGy Xray. More interesting results were observed when 600 cGy radiation was applied, as  $Bi_2O_3$ NPs (heated) and  $Bi_2O_3$ -Z NCs significantly (p < 0.0001 and p < 0.05, respectively) enhanced radiosensitivity of cells.

In conclusion, obtained results revealed that  $Bi_2O_3$  NPs and  $Bi_2O_3$ -Z NCs could act as potent radio sensitizers, although more investigation on other gastric cell lines is required to confirm our findings.