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a  b  s  t  r  a  c  t

Although  distributed  model  predictive  control  (DMPC)  has  received  significant  attention  in the  literature,
the  robustness  of DMPC  with  respect  to model  errors  has  not  been  explicitly  addressed.  In this  paper,
a  novel  online  algorithm  that deals  explicitly  with  model  errors  for DMPC  is  proposed.  The  algorithm
requires  decomposing  the  entire  system  into  N  subsystems  and  solving  N  convex  optimization  problems
to  minimize  an upper  bound  on  a robust  performance  objective  by using  a  time-varying  state-feedback
controller  for each  subsystem.  Simulations  examples  were  considered  to illustrate  the  application  of  the
proposed  method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed model predictive control (DMPC) has received sig-
nificant attention in the literature in recent years. The key potential
advantages of DMPC over centralized MPC  strategies are: (i) it can
provide better performance than fully decentralized control espe-
cially when the interactions ignored in the latter approach are
strong, and (ii) it can maintain flexibility with respect to equip-
ment failure and partial plant shutdowns that may  jeopardize the
successful operation of centralized MPC. The basic idea of DMPC is
to partition the total system of states, controlled and manipulated
variables into smaller subsystems and to assign an MPC  controller
to each subsystem. For the reported DMPC strategies their design is
composed of three parts: (1) Modeling: each controller has access
to a local dynamic model of the corresponding subsystem along
with an interaction dynamic model that accounts for the influ-
ence of the other subsystems. These models can be obtained by
directly decomposing a centralized model of the process [20]. (2)
Optimization: each MPC  solves a local optimization problem. Some
reported strategies use modified objective functions that take into
account the goals of other controllers to achieve full coordination
[23,25] whereas some others use strictly local objectives [14], e.g.
a Nash-equilibrium objective. (3) Communication: at every control
time interval all the controllers exchange their respective solutions.
These three steps are executed at each time interval in an iterative
manner until convergence among the controllers is reached. Venkat
[23] showed that increasing the iterations allows the DMPC strat-

∗ Corresponding author. Tel.: +1 519 885 1211x6980; fax: +1 519 746 4979.
E-mail  addresses: walgherw@engmail.uwaterloo.ca (W.  Al-Gherwi),

hbudman@uwaterloo.ca (H. Budman), aelkamel@uwaterloo.ca (A. Elkamel).

egy to reach the optimal centralized solution while the termination
at any intermediate iteration maintains system-wide feasibility.
Zhang and Li [25] analyzed the optimality of the iterative DMPC
scheme and derived the closed-form solution for an unconstrained
DMPC Motee and Sayyar-Rodsari [17] proposed an algorithm for
optimal partitioning of the process model into subsystems to be
used with distributed MPC. In that work an unconstrained dis-
tributed MPC  framework is used and then a weighting matrix is
defined to convert the distributed system into a directed graph.
Al-Gherwi et al. [1] proposed a methodology for selecting the con-
trol structure in the context of distributed model predictive control
that achieves a trade-off between closed-loop performance in the
presence of model uncertainty and structure simplicity by solving
a mixed integer nonlinear program (MINLP). Aiming at reducing
the computationally demanding quadratic dynamic matrix con-
trol (QDMC), a decentralized QDMC algorithm was proposed by
Charos and Arkun [5]. In this algorithm, it was assumed that the
effect of other subsystems on a particular local controller is kept
unchanged from the previous sampling time so iterations were
not required leading to a significant reduction in computations
but with loss in performance. Katebi and Johnson [11] proposed
a decomposition–coordination scheme for generalized predictive
control. Jia and Krogh [10] explored a distributed MPC  strategy
in which the controllers exchange their predictions and incorpo-
rate this information in their local policies. Camponogara et al.
[4] discussed the distributed MPC  problem and reported an algo-
rithm for cooperative iteration. In addition, these authors proposed
heuristics for handling asynchronous communication problems
and studied the stability characteristics of distributed MPC. Mer-
cangöz and Doyle [16] proposed a distributed model predictive
estimation and control framework. Liu et al. [15] proposed a dis-
tributed MPC  scheme for nonlinear systems by designing two
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