Contents lists available at ScienceDirect

International Journal of Plasticity

journal homepage: www.elsevier.com/locate/ijplas

Simulation of polycrystal deformation with grain and grain boundary effects

H. Lim^a, M.G. Lee^b, J.H. Kim^c, B.L. Adams^d, R.H. Wagoner^{a,*}

^a Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA ^b Graduate Institute of Ferrous Technology, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu,

Pohang, Gyeongbuk 790-784, Republic of Korea

^c Materials Deformation Group, Korea Institute of Materials Science, 531 Changwondaero, Changwon, Gyeongnam 641-831, Republic of Korea ^d Department of Mechanical Engineering, Brigham Young University Provo, UT 84601, USA

ARTICLE INFO

Article history: Received 5 November 2010 Received in final revised form 25 February 2011 Available online 13 March 2011

Keywords: Grain boundary Hall–Petch law Dislocation density Meso-scale simulation

ABSTRACT

Modeling the strengthening effect of grain boundaries (Hall–Petch effect) in metallic polycrystals in a physically consistent way, and without invoking arbitrary length scales, is a long-standing, unsolved problem. A two-scale method to treat predictively the interactions of large numbers of dislocations with grain boundaries has been developed, implemented, and tested. At the first scale, a standard grain-scale simulation (GSS) based on a finite element (FE) formulation makes use of recently proposed dislocation-density-based single-crystal constitutive equations ("SCCE-D") to determine local stresses, strains, and slip magnitudes. At the second scale, a novel meso-scale simulation (MSS) redistributes the mobile part of the dislocation density within grains consistent with the plastic strain, computes the associated inter-dislocation back stress, and enforces local slip transmission criteria at grain boundaries.

Compared with a standard crystal plasticity finite element (FE) model (CP-FEM), the twoscale model required only 5% more CPU time, making it suitable for practical material design. The model confers new capabilities as follows:

- (1) The two-scale method reproduced the dislocation densities predicted by analytical solutions of single pile-ups.
- (2) Two-scale simulations of 2D and 3D arrays of regular grains predicted Hall–Petch slopes for iron of $1.2 \pm 0.3 \text{ MN/m}^{3/2}$ and $1.5 \pm 0.3 \text{ MN/m}^{3/2}$, in agreement with a measured slope of $0.9 \pm 0.1 \text{ MN/m}^{3/2}$.
- (3) The tensile stress-strain response of coarse-grained Fe multi-crystals (9–39 grains) was predicted 2–4 times more accurately by the two-scale model as compared with CP-FEM or Taylor-type texture models.
- (4) The lattice curvature of a deformed Fe-3% Si columnar multi-crystal was predicted and measured. The measured maximum lattice curvature near grain boundaries agreed with model predictions within the experimental scatter.

© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +1 614 292 2079; fax: +1 614 292 6530. *E-mail address:* wagoner.2@osu.edu (R.H. Wagoner).

^{0749-6419/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijplas.2011.03.001