Biomaterials 33 (2012) 8934-8942

Contents lists available at SciVerse ScienceDirect

Biomaterials

journal homepage: www.elsevier.com/locate/biomaterials

Long-term maintenance of mouse embryonic stem cell pluripotency by manipulating integrin signaling within 3D scaffolds without active Stat3

Seung Tae Lee^{a,b}, Jung Im Yun^{a,b}, Andre J. van der Vlies^a, Stephan Kontos^a, Mi Jang^c, Seung Pyo Gong^d, Dae Yong Kim^e, Jeong M. Lim^c, Jeffrey A. Hubbell^{a,*}

^a Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, Lausanne CH-1015, Switzerland ^b Department of Animal Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea

^c WCU Biomodulation Program, Seoul National University, Seoul 151-921, Republic of Korea

^d Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea

^e College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea

A R T I C L E I N F O

Article history: Received 17 August 2012 Accepted 28 August 2012 Available online 19 September 2012

Keywords: Embryonic stem cell Self-renewal Niche Hydrogel Integrin Signaling

ABSTRACT

We engineered an acellular biomimetic microenvironment to regulate stem cell fate and applied it to maintain mouse embryonic stem (ES) cell self-renewal. In the 3D environment formed using hydrogel scaffolds in which specific integrin ligation was provided, Stat3 activation by exogenous leukemia inhibitory factor (LIF) no longer acted as a limiting factor for stem cell self-renewal. Instead, simultaneous stimulation of integrins $\alpha_5\beta_1$, $\alpha_{\nu}\beta_5$, $\alpha_6\beta_1$ and $\alpha_9\beta_1$ within the 3D scaffold greatly increased Akt1 and Smad 1/5/8 activation, which resulted in prolonged self-renewal of the ES cells. The ES cells exposed to the combined stimulation of the integrins for 4 wk in LIF-free 3D scaffolds maintained the spherical morphology of cell colonies without losing any activity of pluripotency. In conclusion, cell niche-specific integrin signaling within the 3D environment supported mouse ES cell self-renewal, and the resulting integrin signaling replaced Stat3 with Akt1 and Smad 1/5/8 as critical signals for mouse ES cell self-renewal.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Improvements in conventional culture systems are urgently needed to reduce chromosomal and functional aberrancy of stem cells maintained *in vitro*. We have focused on establishing biomimetic, defined microenvironments for supporting stem cell self-renewal *in vitro*; we recently reported the possibility of maintaining mouse ES cell phenotype and cellular activity without feeder cells through the use of poly(ethylene glycol) (PEG)-based 3D scaffolds by optimizing integrin ligation within these scaffolds [1]. Since the cell niche and its physical environment greatly influences resulting stem cell characteristics [2–9], elucidation of critical signals for self-renewal in a specific cell niche is very important for designing an optimal biomimetic microenvironment.

Leukemia inhibitory factor (LIF), which induces Stat3 signaling, is widely known as a critical factor for maintaining

the stemness characteristics of mouse ES cells cultured in conventional 2D systems. Within a 3D environment, we have found that stemness gene expression in mouse ES cells could be prolonged by optimizing ligation of integrins via scaffold-bound peptide integrin ligands. Here, we explored how different integrin ligation environments in 3D scaffolds could influence critical signals for mouse ESC self-renewal under LIF-free conditions.

2. Materials and methods

2.1. ES cell culture

E14tg2a ES cells purchased from ATCC (Manassas, VA) were maintained on 10 µg/ml mitomycin C (Sigma–Aldrich, St. Louis, MO)-treated MEFs in standard ES cell culture medium consisting of Dulbecco's modified Eagle's medium (DMEM; Gibco Invitrogen, Grand Island, NY) supplemented with 15% (v/v) heat-inactivated fetal bovine serum (FBS; HyClone, Logan, UT), 0.1 mm β -mercaptoethanol (Gibco Invitrogen), 1% (v/v) nonessential amino acids (NEAA; Gibco Invitrogen), 1 mm sodium pyruvate (Sigma–Aldrich), 2 mm L-glutamine (Gibco Invitrogen), a 1% (v/v) lyophilized mixture of penicillin and streptomycin (Gibco Invitrogen) and 1000 units/ml mouse LIF (Chemicon International, Temecula, CA). Moreover, unless otherwise noted, the ES cells were subpassaged every 3 d and medium change was performed daily during subculture.

^{*} Corresponding author. Tel.: +41 21 693 9681; fax: +41 21 693 9685. *E-mail address:* jeffrey.hubbell@epfl.ch (J.A. Hubbell).

^{0142-9612/\$ –} see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biomaterials.2012.08.062