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a b s t r a c t

This paper describes a displacement discontinuity method for modeling axisymmetric cracks in an elastic
half-space or full space. The formulation is based on hypersingular integral equations that relate displace-
ment jumps and tractions along the crack. The integral kernels, which represent stress influence func-
tions for ring dislocation dipoles, are derived from available axisymmetric dislocation solutions. The
crack is discretized into constant-strength displacement discontinuity elements, where each element
represents a slice of a cone. The influence integrals are evaluated using a combination of numerical inte-
gration and a recursive procedure that allows for explicit integration of hyper- and Cauchy singularities.
The accuracy of the solution at the crack tip is ensured by adding corrective stresses across the tip ele-
ment. The method is validated by a comparison with analytical and numerical reference solutions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The displacement discontinuity method (DDM), as originally
formulated by Crouch (1976b), is a boundary element method that
relies on distributing straight elements with constant displace-
ment jumps along the boundary of the domain, including cracks,
to solve plane elasticity problems. The DDM traces its roots to a
method originally developed to analyze the elastic perturbations
induced by mining tabular excavations (Berry, 1963; Salamon,
1963, 1964; Starfield and Crouch, 1973). The hypersingular inte-
gral equations that underlie the DDM were described by Bui
(1977) among others and were first used directly by Ioakimidis
(1982, 1983) and by Murakami and Nemat-Nasser (1982) to solve
crack problems. These integral equations were reformulated in
terms of complex variables by Linkov and Mogilevskaya (1994)
and later applied to the solution of two-dimensional curvilinear
crack problems by Mogilevskaya (1997, 2000). Further information
on the historical developments of this method can be found else-
where (Crouch, 1976a; Linkov and Mogilevskaya, 1998).

The hypersingular integral equations actually represent distri-
butions of dislocation dipoles with density corresponding to the
actual displacement discontinuities along the crack, and to ficti-
tious displacement jumps along other boundaries of the elastic do-
main. The DDM is thus the result of a discretization of these
equations with the boundary divided into segments and the

displacement jumps along each segment assumed to be constant
or more generally to vary according to a linear, quadratic, or cubic
polynomial (e.g. Crawford and Curran, 1982; Napier and Malan,
1997; Peirce, 2010). A related method is to globally approximate
the displacement discontinuity fields along the crack by the prod-
uct of a function with a square root behavior at the tips and a trun-
cated series of orthogonal polynomials (Korsunsky and Hills, 1995;
Hills et al., 1996).

These methods are actually close relatives of the distributed
dislocation technique for solving two-dimensional crack problems,
which emerged from pioneering works by Eshelby et al. (1951),
Louat (1962), Bilby et al. (1963), Keer and Mura (1966), Bilby and
Eshelby (1968), Erdogan (1969), Comninou (1977) and Marcin-
kowski (1979). In this method, dislocations rather than dislocation
dipoles are distributed along the crack, with the unknown disloca-
tion density now corresponding to the displacement jump gradi-
ent. Solving crack problems with the distributed dislocation
method involves approximating the density function by a series
of orthogonal polynomials multiplied by a square root singular
weight at the crack tips (Hills et al., 1996). Provided that the dislo-
cation solutions are available for the geometry under consider-
ation, this technique provides highly accurate estimation of the
stress intensity factor. However, it is not as flexible for modeling
propagating cracks, especially curved ones, as the DDM. Indeed,
crack extension in the DDM is directly simulated by adding a
new element to the crack tip. This particular feature of the DDM
makes it also attractive in comparison to the finite element meth-
ods for problems, where the medium can be assumed to be elastic
and homogeneous.
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