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a b s t r a c t

In this paper, we discuss various formats of gradient elasticity and their performance in static and
dynamic applications. Gradient elasticity theories provide extensions of the classical equations of elastic-
ity with additional higher-order spatial derivatives of strains, stresses and/or accelerations. We focus on
the versatile class of gradient elasticity theories whereby the higher-order terms are the Laplacian of the
corresponding lower-order terms. One of the challenges of formulating gradient elasticity theories is to
keep the number of additional constitutive parameters to a minimum. We start with discussing the gen-
eral Mindlin theory, that in its most general form has 903 constitutive elastic parameters but which were
reduced by Mindlin to three independent material length scales. Further simplifications are often possi-
ble. In particular, the Aifantis theory has only one additional parameter in statics and opens up a whole
new field of analytical and numerical solution procedures. We also address how this can be extended to
dynamics. An overview of length scale identification and quantification procedures is given. Finite ele-
ment implementations of the most commonly used versions of gradient elasticity are discussed together
with the variationally consistent boundary conditions. Details are provided for particular formats of gra-
dient elasticity that can be implemented with simple, linear finite element shape functions. New numer-
ical results show the removal of singularities in statics and dynamics, as well as the size-dependent
mechanical response predicted by gradient elasticity.
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1. Introduction

Classical continuum solid mechanics theories, such as linear or
nonlinear elasticity and plasticity, have been used in a wide range
of fundamental problems and applications in civil, chemical, elec-
trical, geological, mechanical and materials engineering, as well
as in various fields of physics and life sciences. Even though the
scales that these theories were initially designed for were ranging
roughly from millimetre to metre, to describe deformation phe-
nomena and processes that could be captured by the naked eye,
they were also used in the last century to describe phenomena
evolving at atomistic scales (elastic theory of dislocations), earth
scales (faults and earthquakes) and astronomic scales (relativistic
elastic solids). More recently, observations in advanced optical
and electron microscopes have been interpreted by using classical
continuum mechanics theory; in the last few years standard elas-
ticity formulae have also been used to characterise deformation

behaviour at the nanoscale (e.g. nanotubes or other nanoscale
objects).

It is in this regime of micron and nano-scales that experimental
evidence and observations with newly developed probes such as
nano-indenters and atomic force microscopes have suggested that
classical continuum theories do not suffice for an accurate and
detailed description of corresponding deformation phenomena.
More notably size effects could not be captured by standard elas-
ticity and plasticity theories, even though such effects become
dominant as the specimen or component size decreases. Moreover,
classical elastic singularities as those emerging during the applica-
tion of point loads or occurring at dislocation lines and crack tips
cannot be removed, and the same is true for discontinuities occur-
ring at interfaces. Another important class of problems that could
not be treated with classical theory is when the homogeneous
stress–strain curve contains a negative slope regime where strain
softening or a phase transformation occurs. This is the case with
elastic (twinning, martensitic transformations) and plastic (neck-
ing, shear banding) instabilities where classical theory could not
provide any information on their evolution and spatio-temporal
characteristics.
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