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a b s t r a c t

The recent rewriting of the Bažant’s size effect law (Morel, 2008) which has suggested the existence of an
additional asymptotic regime for intermediate structure sizes is now compared to numerical simulations
of fracture of geometrically similar notched structures of different sizes extending over 2.4 decades. The
quasibrittle fracture behavior is simulated through cohesive zone model (bilinear softening) using a con-
stant set of cohesive parameters whatever the specimen size D is. The R-curves resulting from the load–
displacement responses are estimated and appear as size-independent. On this basis, the different
asymptotic regimes expected for the size effect on fracture properties at peak load such as the relative
crack length, the resistance to crack growth and the nominal strength are shown in fair agreement with
the size effect observed on the results obtained from numerical simulations.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is nowadays firmly established that the size effect of quasi-
brittle materials such as concrete, mortar, rocks or wood is an ener-
getic size effect and not a statistical one in the sense of the Weibull’s
statistics (Weibull, 1939). Indeed, during the failure of quasibrittle
materials, the development of a fracture process zone (FPZ) leads
to a stable crack growth prior to the attainment of the peak load.
Thus, if the notion of statistical distribution of the local strength
exists in quasibrittle materials, the statistical effects are sup-
planted by release of the stored energy engendered by the stress
redistributions which take place in the FPZ. This characteristic of
stable crack growth in quasibrittle materials is well described
within the framework of equivalent linear elastic fracture mechan-
ics (eq. LEFM) through the resistance curve, commonly called
R-curve. The R-curve is at the source of the size effect law (SEL)
proposed by Bažant and co-workers (Bažant, 1984, 1997a,b,
2000) which describes the size effect on nominal strength of
geometrically similar notched structures of different characteristic
sizes D. The nominal strength of a structure of characteristic size D
is defined as:

rNðDÞ ¼ cN
Pu

bD
; ð1Þ

where Pu is the maximum external load applied to the structure
(commonly called the peak load), b is the thickness of the speci-
men and cN is a coefficient introduced for convenience. In the last
evolution of the SEL, Bažant (1997b) has shown, from an energy-
based asymptotic analysis founded on the assumption of a size-
independent R-curve, that the size effect on nominal strength rN

can be estimated, in a first order asymptotic approximation, as:

rNðDÞ ¼
Bftffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D

D0

q ; ð2Þ

where ft [Pa] can be considered as the tensile strength of the mate-
rial, B is a constant and D0 [m] is the crossover size between two ex-
treme asymptotic behaviors.1 Note that the size effect defined in Eq.
(2), qualified as ‘type 2’ size effect (Bažant, 2004), occurs in the case
of a large initial notch or preexisting stress-free (fatigued) crack and
if the geometry of the specimen is positive (i.e., such that Pu occurs
while the FPZ is still attached to the notch tip).

According to Eq. (2), the size effect on the nominal strength of
geometrically similar notched structures is expected to be transi-
tional between two extreme asymptotic behaviors as shown in
Fig. 1. In the case of small structure sizes (i.e., D� D0), rN ’ B
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