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a b s t r a c t

Eshelby’s problem of piezoelectric inclusions arises sometimes in exploiting the electromechanical cou-
pling effect in piezoelectric media. For example, it intervenes in the nanostructure design of strained
semiconductor devices involving strain-induced quantum dot (QD) and quantum wire (QWR) growth.
Using the extended Stroh formalism, the present work gives a general analytical solution for Eshelby’s
problem of two-dimensional arbitrarily shaped piezoelectric inclusions. The key step toward obtaining
this general solution is the derivation of a simple and compact boundary integral expression for the
eigenfunctions in the extended Stroh formalism applied to Eshelby’s problem. The simplicity and com-
pactness of the boundary integral expression derived make it much less difficult to analytically tackle
Eshelby’s piezoelectric problem for a large variety of non-elliptical inclusions. In the present work, expli-
cit analytical solutions are obtained and detailed for all polygonal inclusions and for the inclusions char-
acterized by Jordan’s curves and Laurent’s polynomials. By considering the piezoelectric material GaAs
(110), the analytical solutions provided are illustrated numerically to verify the coincidence between dif-
ferent expressions, and to clarify the jump across the boundary of the inclusion and the singularity
around the corner of the inclusion.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many semiconductor materials are piezoelectric. The coupling
effect between mechanical and electric fields has an important
contribution to the electronic and optical properties of semicon-
ductor materials (Pan, 2002a,b). Piezoelectric materials have been
widely used as sensors and actuators in intelligent advanced struc-
tures. For example, a crucial factor in the study of strained semi-
conductor quantum devices is the strain-induced quantum dot
(QD) and quantum wire (QWR) growth (see, e.g., O’Reilly and
Adams, 1994; Nishi et al., 1994; Gosling and Willis, 1995; Park
and Chuang, 1998; Davies, 1998; Andreev et al., 1999; Faux and
Pearson, 2000; Freund, 2000; Pearson and Faux, 2000; Pan and
Yang, 2003; Pan et al., 2005). Along with considerable attention at-
tracted by piezoelectric materials, suitable mathematical modeling
becomes important to studying electromechanical behaviors. In
particular, Green’s function technique has been developed both
for the three-dimensional (3D) case (Wang, 1992; Dunn and Taya,
1993; Dunn and Wienecke, 1997; Huang and Kuo, 1997;
Kuvshinov, 2008) and for the two-dimensional (2D) case (Ting,
1996; Lu and Williams, 1998; Pan, 2002c). For 2D piezoelectric

materials, another remarkable technique is the extended Stroh for-
malism. Because of its preservation of most essential features of
the Stroh formalism, the extended Stroh formalism acts as a very
powerful tool for the study of piezoelectricity (Ting, 1996; Yin,
2005; Hwu, 2008). Note that the classical Stroh formalism has also
extended to solve some three-dimensional anisotropic problems
(Wu, 1998; Barber and Ting, 2007).

Eshelby’s piezoelectric inclusion problem includes the well-
known Eshelby’s elastic inclusion problem as a particular one
(Eshelby, 1957), corresponding to an infinite homogeneous piezo-
electric medium containing a subdomain x, called an electroelastic
inclusion, over which a uniform eigenstrain and/or eigenelectric
field is prescibed (see, e.g., Wang, 1992; Ru, 2000; Pan, 2004). It
is known that Eshelby’s elastic inclusion problem is of prominent
importance to a large variety of mechanical and physical phenom-
ena and plays an important role in particular in micromechanics
(see, e.g., Willis, 1981; Mura, 1982; Nemat-Nasser and Hori,
1993). So does Eshelby’s piezoelectric inclusion problem for piezo-
electric materials. Recently, we have obtained explicit analytical
solutions to Eshelby’s isotropic elastic and anisotropic thermal
inclusion problems for a wide variety of non-elliptical inclusions
(Zou et al., 2010a,b). For Eshelby’s piezoelectric inclusion problem,
most of the existing analytical studies concern elliptical/ellipsoidal
shapes (Wang, 1992; Liang et al., 1995; Chung and Ting, 1996;
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