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a b s t r a c t

The formulation of the constrained elastica problem proposed in this paper is predicated on two key con-
cepts: first, the deformed elastica is described by means of the distance from the conduit axis; second, the
problem is formulated in terms of the Eulerian curvilinear coordinate of the conduit rather than the nat-
ural curvilinear coordinate of the elastica. This approach is further implemented within a segmentation
algorithm, which transforms the global constrained elastica problem into a sequence of analogous aux-
iliary problems that result from dividing the conduit and the elastica into segments limited by contacts.
Each auxiliary segment entails solving a segment of elastica subject to isoperimetric constraints corre-
sponding to the assumed positions of the segment ends along the conduit. This new formulation resolves
in one stroke a series of issues that afflict the classical Lagrangian approach: (i) the contact detection is
reduced to checking whether a threshold on the distance function is violated, (ii) the isoperimetric con-
ditions are transformed into regular boundary conditions, instead of being treated as external integral
constraints, (iii) the method yields a well-conditioned set of equations that does not degenerate with
decreasing flexural rigidity of the elastica and/or decreasing clearance between the conduit and the
elastica.
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Nomenclature

Two distinct curvilinear coordinates are introduced in the for-
mulation of the constrained elastica problem: the Lagrangian coor-
dinate s along the elastica and the Eulerian coordinate S along the
conduit axis. More generally, we adopt the convention of using
lower case for quantities pertaining to the elastica and upper case
for variables describing the conduit. Furthermore, field variables
for the elastica can be viewed either as Lagrangian (s) or as Eulerian
(S) functions; in the former case, the quantities are tagged with a
tilde (�). Calligraphic symbols denote dimensionless forces, while
Greek letters are used for dimensionless quantities. Finally, the in-
serted object is referred to as a ‘‘rod’’ for simplicity, despite the as-
sumed planar nature of the problem.

1. Introduction

The insertion of a flexible rod into a curved hollow conduit is a ba-
sic problem encountered in many medical and engineering applica-
tions. Examples include the insertion of a guidewire into the artery
of a patient as part of a procedure to deploy a stent to prop the artery
wall (Chen and Li, 2007), the endoscopic examination of internal

organs (Katopodes et al., 2001), the endoscopic investigation of pipe
systems, and the insertion of artificial fibers in industrial crimpers
(Cooke, 2000). Another application concerns the drilling of multiple
curved wells from a single platform to reach a deep hydrocarbon
reservoir. Here the problem further requires considering the evolu-
tion of the borehole (Downton, 2007; Detournay, 2010), which is
itself conditioned by the interaction between the borehole and the
drillstring (Cunha, 2004). Energy dissipation devices based on the
multiple folding of a flexible member inside a rigid enclosure
provide yet another example of the type of structures under investi-
gation (Chai, 2006). In other applications, the contact takes place on
one side only of the elastica, such as the insertion of a paper sheet
into a toner (Soong and Choi, 1986) or the uplift buckling of textile
fabrics or railway tracks (Fraser, 2003).

This class of problems is known as constrained elastica. These
problems are strongly nonlinear, because of the nonpenetration
constraint between the flexible rod and the walls of the conduit,
a condition known as unilateral contact (Brogliato, 1999). In addi-
tion, any large deflections of the rod from a stress-free configura-
tion require considerations of a geometrically nonlinear model of
the rod that can introduce parasitic solutions with curling of the
elastica (Arreaga et al., 2002); indeed, these solutions are generally
not physically admissible within the context of a rod inserted in-
side a conduit. Furthermore, in a large majority of applications that
fall within the class of constrained elastica, the inserted length of
the elastica is a priori unknown. The formulation of such problems
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