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a b s t r a c t

Elastostatic problem of identification of an ellipsoidal cavity or inclusion (rigid or linear elastic) in an iso-
tropic, linear elastic solid is considered. The reciprocity gap functional method is used for solving the
problem. It is shown that the parameters of the ellipsoidal defect (coordinates of its center, the directions
and magnitudes of the semiaxes and elastic moduli in the case of isotropic, linear elastic inclusion),
located in an infinite elastic solid are expressed by means of the values of the reciprocity gap functional.
The values of the reciprocity gap functional can be calculated if the loads and displacements correspond-
ing to uniaxial tension (compression) of an infinite solid are known on the closed surface containing the
defect inside. Applications of the results to the problem of ellipsoidal defect identification in a bounded
body are discussed. A number of numerical examples showing the efficiency of the developed identifica-
tion method are considered.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The reciprocity gap functional (RGF) is defined as an integral
over a closed surface, located in an elastic body, of the function,
depending on the given and auxiliary elastic fields. The RGF is
equal to zero for all regular auxiliary elastic fields if there are no
defects inside the surface. If a defect is located inside the closed
surface, then the values of RGF can differ from zero for some regu-
lar auxiliary elastic fields and the values of RGF give information
about the defect. Similar properties of the scalar elliptic equations
were used for solving inverse problems by Andrieux and Ben Abda
(1996), Bannour et al. (1997), El Badia and Ha-Duong (2000), Alves
et al. (2004), El Badia (2005). Andrieux et al. (1999) applied the RGF
method for solving elastostatic inverse problem of a plane crack
identification. Other publications concerning applications of the
RGF method to the inverse problems can be found in the reviews
of Bonnet and Constantinescu (2005) and Avril et al. (2008). The
RGF method enables also to develop an analytical approach for de-
fect parameters identification in some particular cases. The prob-
lems of identification of spherical and spheroidal defects in an
elastic solid were solved analytically in Goldstein et al. (2007)
and Shifrin and Shushpannikov (2010). Solutions of the problems
used substantially the spherical and axial symmetry of the defects,
respectively. Shifrin (2010) proposed an approach for determina-
tion of the geometrical parameters of an arbitrary ellipsoidal defect

using results of one uniaxial tension (compression) test. The
further development of the approach is presented in this paper.
The formulas for determination of elastic constants of an isotropic,
linear elastic inclusion are obtained also. A number of numerical
examples, including the cases when a defect has non-ellipsoidal
shape, are considered. The examples show that developed identifi-
cation method enables to determine the parameters of an ellipsoi-
dal defect with high accuracy. In the case of a non-ellipsoidal
defect the method enables to construct an ellipsoid that reasonably
approximates the defect.

2. Statement of the problem

Let V � R3 be a simply connected domain with a boundary @V,
and G � V is an ellipsoid, X = VnG. Let us suppose that an isotropic,
linear elastic body with a shear modulus lM and Poisson ratio mM

occupies the domain X. The ellipsoidal defect G can be a cavity
or an inclusion (rigid or linear elastic). Let us introduce Cartesian
coordinates OX1X2X3. We will mark with the superscript d the
stress–strain state in the body X : rd
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is the displacement vector.

According to our suppositions the following equalities are valid
for X = (X1,X2,X3) 2X:
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