

D. Hassanzadeh-Lelekaami, Ph.D,

Arak University of Technology, Dhmath@arakut.ac.ir

H. Roshan-Shekalgourabi, Ph.D,

Arak University of Technology, Hrsmath@gmail.com

Abstract: In this paper, we introduce the notion of pseudo-prime submodules of modules as a generalization of the prime ideal of commutative rings.

Keywords: Pseudo-prime submodule, pseudo-primeful, pseudo-injective, Topological module.

1 Introduction

In this paper we introduce a generalization of prime ideals of a ring. We use it to define new classes of modules. We investigate some algebraic properties of these new classes.

The 45th Annual Iranian Mathematics Conference

Throughout the paper, all rings are commutative with identity and all modules are unital. For a submodule N of an R-module M, $(N :_R M)$ denotes the ideal $\{r \in R \mid rM \subseteq N\}$ and annihilator of M, denoted by $\operatorname{Ann}_R(M)$, is the ideal $(\mathbf{0} :_R M)$. If there is no ambiguity we will write (N : M) (resp. $\operatorname{Ann}(M)$) instead of $(N :_R M)$ (resp. $\operatorname{Ann}_R(M)$).

2 Pseudo-Prime Submodules

Definition 2.1. Let M be an R-module.

- 1. A proper submodule N of M is called pseudoprime if (N :_R M) is a prime ideal of R.
- We define the pseudo-prime spectrum of M to be the set of all pseudo-prime submodules of M and denote it by X^R_M. If there is no ambiguity we write only X_M instead of X^R_M. For

any prime ideal $I \in X_R = \operatorname{Spec}(R)$, the collection of all pseudo-prime submodules N of M with (N:M) = I is designated by $X_{M,I}$.

- 3. For a submodule N of M we define $V^M(N) = \{L \in X_M \mid L \supseteq N\}$. If there is no ambiguity we write V(N) instead of $V^M(N)$.
- 4. When $X_M \neq \emptyset$, the map $\psi : X_M \rightarrow$ Spec(R/Ann(M)) defined by $\psi(L) = (L : M)/\text{Ann}(M)$ for every $L \in X_M$, will be called the natural map of X_M . An R-module M is called pseudo-primeful if either $M = (\mathbf{0})$ or $M \neq (\mathbf{0})$ and the natural map of X_M is surjective.
- 5. M is called pseudo-injective if the natural map of X_M is injective.

Remark 2.2.

 By our definition, the prime ideals of the ring R and pseudo-prime submodules of the R-module R are the same. This shows that pseudo-prime submodule is a generalization of the notion of prime ideal to the modules.

^{*}Corresponding Author