
On the Analysis and Verification of Graph
Transformation Systems

Adel Torkaman Rahmani, Vahid Rafe
Department of Computer Engineering

Iran University of Science and Technology
Tehran, Iran

{rahmani, rafe}@iust.ac.ir

Abstract—Graph Transformation has recently become more
and more popular as a general formal modeling language.
Easy to use by designers and a considerable capability to
behavioral modeling of dynamic systems characterize it among
other formalisms. In this paper we concentrate on how to
analyze these models. We will describe our approach to show
how one can verify the designed graph transformation systems.
To verify graph transformation systems we use a novel
approach: using Bogor model checker to verify graph
transformation systems.

I. INTRODUCTION
Most of the artifacts software engineers are dealing with

are nothing but suitable annotated graphs. Software
architectures, class diagrams and version histories are only a
few well-known examples in which graphs have proven their
usefulness in everyday software engineering. These models,
and many others, can easily be described by means of
suitable graph transformation systems [1]: They can help
formalize the syntax behind these models, but they can also
be useful to define the formal semantics of these notations
[2, 3].

Rule based nature of graph transformation systems can
play an important role in modeling of complex and large
systems. But so far, most of the research concentrated on
graph transformation systems as a modeling means, without
considering the need for suitable analysis tools. Oftentimes,
modeling is not enough since users want to be able to
“discover” the interesting properties behind their models.
This is why even the perfect graph transformation system
must be complemented with automated analysis capabilities
to let users reason on it and understand whether the
transformation system fulfills their requirements. And model
checking has proven to be a viable solution for this purpose.

The two most relevant approaches that merge graph
transformation systems and model checking are CheckVML
[4, 5] and GROOVE [6]. Despite their powerful theoretical
background, their usability for model checking complex
graph transformation systems is limited. We will explain
these limitations in the next section.

The proposal presented in this paper addresses these
limitations and adopts Bogor [7] for the model checking of
complex graph transformation systems. In our approach,
graphs are translated into BIR (Bandera Intermediate
Language [8] -the input language of Bogor- while properties
are rendered by means of LTL (Linear Temporal Logic) and
special-purpose rules. The result is used to feed Bogor that
performs the verification.

The paper is organized as follows. Section 2 surveys the
state of the art. Section 3 briefly introduces Bogor and
motivates the choice of this model checker with respect to
other options. In section 4, we briefly introduce attributed
typed graph transformation systems. Section 5, describes our
approach and shows how we encode a graph transformation
system in BIR and presents some experimental results and
compares them with existing approaches. Section 6
concludes the paper.

II. RELATED WORK
The theoretical foundations for the verification of graph

transformation systems through model checking have been
studied thoroughly by Heckel et al. in [9]: graphs are
interpreted as states and transformation rules as transitions.
This idea is exploited by both GROOVE [6] and CheckVML
[4], as well as by our approach.

GROOVE applies graph-specific model checking
algorithms by rendering graphs as states and transitions as
application of graph transformation rules. Properties are
specified as transformation rules and CTL expressions
containing rule names as atoms. Since GROOVE does not
support typed graphs, the verification of real models
becomes complex (or unfeasible). There is a proposal to
extend GROOVE with attributed graphs [10], but it still does
not support all the “common” types (e.g., strings) and is
complex and difficult for the designers since attributes are
separated from their values. Since real models can have
nodes with many attributes, GROOVE graphs are not easy to
understand, and its performance deteriorates with respect to
the size of the graph.

