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a b s t r a c t

In earthquake engineering and seismology it is of interest to know the surface motion at a given site due to

the incoming and scattered seismic waves by surface geology. This can be formulated in terms of

diffraction of elastic waves and then the indirect boundary element method (IBEM) for dynamic elasticity

is used. It is based on the explicit construction of diffracted waves at the boundaries from which they

radiate. This provides the analyst with insight on the physics of diffraction. The IBEM has been applied to

study the amplification of elastic waves in irregular soil profiles. From the strong or weak satisfaction of

boundary conditions and a simple analytical discretization scheme a linear system of equations for the

boundary sources is obtained. Here, we explore the use of a weak discretization strategy with more

collocation points than force densities. The least squares enforcement of boundary conditions leads to a

system with reduced number of unknowns. This approach naturally allows one to use both coarser and

finer boundary discretizations for smooth and rapidly varying profiles, respectively. A well studied

semicircular canyon under incident P or SV in-plane waves is used to calibrate this method. Several

benefits are obtained using mixed meshing that leads to the least squares condensation of the IBEM.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The use of integral equations in engineering and physics can be
traced back to the pioneering work of C. Somigliana in 1886. He
developed the integral equation that relates displacements to
tractions in the boundary of a body using reciprocity [1].
Important developments in this area are the relationships
between surface and volume integrals, bear the names of Gauss,
Stokes and Green [2]. On the other hand, development of the theory
of integral equations is due to Fredholm at the beginning of the 20th
century [3].

The most important achievements in the theory of integral
equations were not attained until the 1960s when electronic
computers became widely available. Significant contributions
were made by Kupradze, Mikhlin, Rizzo and Cruse, among many
others [4]. A recent overview of boundary integral methods in
elastodynamics gives a comprehensive account [5].

In the boundary element method (BEM), the field at any point
within a given domain is given in terms of integrals of the field at
the boundary of the domain. This means that the totality of the
information pertaining to the domain is at the boundary. The BEM
is frequently called the boundary integral equations (BIE) method
and can be grouped in two families: ‘‘direct’’ that relates the

physical variables in a given domain to the values taken by these
variables at the boundary and ‘‘indirect’’ that relies on an inter-
mediate unknown, which is usually a distribution of auxiliary
sources along the boundary. The BEM and IBEM easily fulfill
radiation conditions at infinity and can handle complex boundary
geometries. Thus, in most cases they do not require absorbing
boundaries.

Early applications of BIE methods in elastodynamics considered
the singularities of the integrand kernels, as integrals of the Green
functions and its derivatives have to be evaluated at the very
location of the sources. The pioneering works by Wong and
Jennings [6] and Sills [7] are good examples of these efforts. To
avoid singularities, various formulations have been developed
[8–18], in which singularities were placed outside the domains
of interest. These formulations are early expressions of the method
of fundamental solutions (MFS). In the MFS the field is approxi-
mated by a linear combination of fundamental solutions expressed
in terms of sources located outside the domain of the problem. Its
coefficients and the sources’ locations are determined by satisfying
the boundary conditions in a least squares sense. A comprehensive
survey on the MFS and related methods is given by Fairweather and
Karageorghis [19]. In strong motion seismology various wave
propagation studies for irregular profiles can be regarded as
representatives of the MFS as well.

A variational IBEM was presented for dealing with various large
problems of site effects [20]. The strategy consisted of constructing
a linear representation of the force densities in terms of a complete
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