Contents lists available at SciVerse ScienceDirect



# Colloids and Surfaces A: Physicochemical and Engineering Aspects



journal homepage: www.elsevier.com/locate/colsurfa

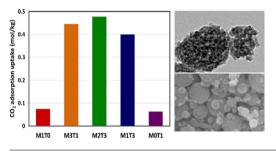
# Graft copolymer templated synthesis of mesoporous $MgO/TiO_2$ mixed oxide nanoparticles and their $CO_2$ adsorption capacities

Harim Jeon<sup>a,1</sup>, Yoon Jae Min<sup>b,1</sup>, Sung Hoon Ahn<sup>a</sup>, Seok-Min Hong<sup>b</sup>, Jong-Shik Shin<sup>c</sup>, Jong Hak Kim<sup>a,\*</sup>, Ki Bong Lee<sup>b,\*\*</sup>

<sup>a</sup> Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea

<sup>b</sup> Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea

<sup>c</sup> Department of Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea


### HIGHLIGHTS

# Mesoporous MgO/TiO<sub>2</sub> mixed oxides were synthesized via a sol-gel process.

- PVC-g-POEM graft copolymer was templated.
- MgO/TiO<sub>2</sub> mixed oxide exhibited much higher CO<sub>2</sub> adsorption capacity than pure MgO or TiO<sub>2</sub>.

# G R A P H I C A L A B S T R A C T

Mesoporous MgO/TiO<sub>2</sub> mixed oxides were synthesized via a sol-gel process by templating poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer. MgO/TiO<sub>2</sub> mixed oxide exhibited much higher CO<sub>2</sub> adsorption capacity than pure MgO or TiO<sub>2</sub> due to the increased surface area and pore volume.



# ARTICLE INFO

Article history: Received 9 May 2012 Received in revised form 30 July 2012 Accepted 5 August 2012 Available online 15 August 2012

Keywords: CO<sub>2</sub> adsorption Porous material Sol-gel process Graft copolymer Magnesium oxide Titanium oxide

#### ABSTRACT

Mesoporous mixed oxide nanoparticles consisting of MgO and TiO<sub>2</sub> were synthesized via a sol-gel process by templating poly(vinyl chloride)-*g*-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer. The mesoporous structures and morphologies of the MgO/TiO<sub>2</sub> mixed oxides were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. Interestingly, MgO/TiO<sub>2</sub> mixed oxide exhibited much higher CO<sub>2</sub> adsorption capacity (0.477 mol CO<sub>2</sub>/kg sorbent for 40:60 MgO/TiO<sub>2</sub>) than pure MgO (0.074) or TiO<sub>2</sub> (0.063). This result arises from the increase in surface area and pore volume of the mixed oxide due to the formation of bimodal pores.

© 2012 Elsevier B.V. All rights reserved.

# 1. Introduction

As carbon dioxide emissions resulting from the use of fossil fuels has been regarded as a main cause for global warming, considerable interest has been generated for carbon dioxide capture and storage (CCS) as a feasible solution to reduce the concentration of atmospheric carbon dioxide [1–3]. Absorption by aqueous solutions or

<sup>\*</sup> Corresponding author. Tel.: +82 2 2123 5757; fax: +82 2 312 6401.

<sup>\*\*</sup> Corresponding author. Tel.: +82 2 3290 4851; fax: +82 2 926 6102.

*E-mail addresses:* jonghak@yonsei.ac.kr (J.H. Kim), kibonglee@korea.ac.kr (K.B. Lee).

<sup>&</sup>lt;sup>1</sup> These authors contributed equally.

<sup>0927-7757/\$ -</sup> see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.colsurfa.2012.08.009