Bioresource Technology 130 (2013) 763-768

Contents lists available at SciVerse ScienceDirect

Bioresource Technology

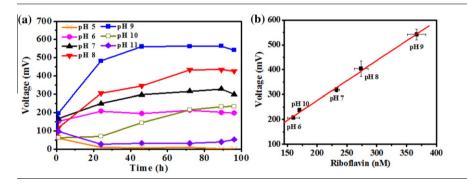
journal homepage: www.elsevier.com/locate/biortech

Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of *Shewanella* in alkaline microbial fuel cells

Yang-Chun Yong^a, Zhao Cai^b, Yang-Yang Yu^b, Peng Chen^b, Rongrong Jiang^b, Bin Cao^{c,d}, Jian-Zhong Sun^a, Jing-Yuan Wang^c, Hao Song^{b,d,e,*}

^a Laboratory of eBiorefinery & iMicrobe, Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China ^b School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore

^c School of Civil and Environmental Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore


^d Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore

^e School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

HIGHLIGHTS

- ► Shewanella delivers the highest power output at pH = 9.
- Shewanella synthesizes 0.6 times higher level of riboflavin at pH = 9 than 7.
- Increased riboflavin synthesis underlies enhanced electron transfer in Shewanella.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history: Received 11 July 2012 Received in revised form 29 November 2012 Accepted 30 November 2012 Available online 11 December 2012

Keywords: Microbial fuel cells pH Riboflavin Shewanella Extracellular electron transfer

ABSTRACT

Electrolyte pH tremendously affects the electricity output of microbial fuel cells. However, its underlying molecular mechanism remains elusive, in particular for *Shewanella oneidensis* MR-1, one of the most widely adopted electrogenic microorganisms. Herein, we found that MFCs were able to deliver a significant (but different) electricity output in a wide range of pH (from 6 to 10), with the maximum at pH = 9 (alkaline), which delivers ~1.5 times' higher power output than that at pH = 7 (neutral). Furthermore, cyclic voltammetry analysis showed an enhanced electrochemical activity of riboflavin (responsible for extracellular electron transfer of *Shewanella*) at alkaline pH. Strikingly, the concentration of riboflavin synthesized by *Shewanella* in MFCs at different pH showed a good correlation with the electricity output of MFCs. Thus, our results substantiated that the increase of riboflavin biosynthesis by *Shewanella* at the alkaline condition underlies the improvement of the electricity output in MFCs.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The microbial fuel cell (MFC) is a renewable energy source that can convert organic wastes into electricity (Alfonta, 2010; Logan, 2009; Lovley, 2006; Rabaey and Verstraete, 2005). Bacteria transfer intracellular electrons generated from the degradation of organic wastes to inert solid electrodes through various extracellular electron transfer (EET) pathways, *i.e.*, direct EET through outer

^{*} Corresponding author at: School of Chemical and Biomedical Engineering, and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. Tel.: +65 6790 4485; fax: +65 6514 1084.

E-mail address: songhao@ntu.edu.sg (H. Song).

^{0960-8524/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biortech.2012.11.145