Bioresource Technology 130 (2013) 278-287

Contents lists available at SciVerse ScienceDirect

Bioresource Technology

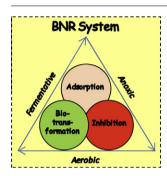
journal homepage: www.elsevier.com/locate/biortech

Modeling the fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater

Malek G. Hajaya¹, Spyros G. Pavlostathis*

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA

HIGHLIGHTS


- The fate and effect of BAC in a continuous-flow BNR system were simulated.
- The model considered BAC adsorption, inhibition, and resistance/biotransformation.
- BAC adsorption determines the level of its inhibitory effect.
- ► BAC biotransformation determines the extent of exposure of microbial communities.
- BAC inhibition is reduced/eliminated by microbial acclimation and enrichment.

A R T I C L E I N F O

Article history: Received 12 September 2012 Received in revised form 18 November 2012 Accepted 25 November 2012 Available online 12 December 2012

Keywords: Benzalkonium chlorides Biological nitrogen removal Kinetics Modeling Simulation

G R A P H I C A L A B S T R A C T

$A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

The fate and effect of the antimicrobial compounds benzalkonium chlorides (BACs) on the biological nitrogen removal (BNR) processes for a continuous-flow, three-stage laboratory-scale BNR system were modeled. Three kinetic sub-models, corresponding to each reactor, were developed and then combined in a comprehensive ASM1-based model. Kinetic parameters for the three sub-models were evaluated using experimental data obtained from independent batch assays. The biodegradation of BACs was modeled with a mixed-substrate Monod equation. The inhibitory effect of BACs on the utilization of degradable COD and denitrification was modeled as competitive inhibition, whereas non-competitive inhibition was used to model the effect of BACs on nitrification and inhibition coefficients were evaluated. The model simulated well the long-term performance of the BNR system treating a poultry processing wastewater with and without BACs. Enhanced BAC degradation by heterotrophs and increased resistance of nitrifiers to BACs, reflecting acclimation/enrichment over time, is a salient feature of the model.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Sanitation practices in poultry and meat processing facilities generate wastewater which is combined with other wastewater streams and typically treated in biological nitrogen removal (BNR) systems comprised of a combination of fermentation, nitrification and denitrification processes. Quaternary ammonium compounds (QACs) are common antimicrobial compounds used extensively in industrial sanitizer formulations (Cross and Singer, 1994; Kummerer et al., 2002; Tezel and Pavlostathis, 2012). Among all classes of QACs, benzalkonium chloride homologs (BACs) of different alkyl chain lengths, mainly C₁₂, C₁₄, and C₁₆, are common in commercial sanitizer formulations (Sutterlin et al., 2008). The poor selectivity and target specificity of BACs could negatively impact

^{*} Corresponding author. Address: School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512, USA. Tel.: +1 404 894 9367; fax: +1 404 894 8266.

E-mail address: spyros.pavlostathis@ce.gatech.edu (S.G. Pavlostathis).

¹ Present address: Civil Engineering Department, Tafila Technical University, Tafila 66110, Jordan.

^{0960-8524/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biortech.2012.11.103