Bioresource Technology 118 (2012) 350-358

Contents lists available at SciVerse ScienceDirect

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Catalytic etherification of glycerol to produce biofuels over novel spherical silica supported Hyflon[®] catalysts

Francesco Frusteri^{a,*}, Leone Frusteri^b, Catia Cannilla^a, Giuseppe Bonura^a

^a CNR-ITAE, "Nicola Giordano", Via S. Lucia 5, 98126 Messina, Italy ^b Dip. di Chimica Industriale ed Ing. Materiali, Viale F. Stagno D'Alcontres 31, S. Agata, 98166 Messina, Italy

HIGHLIGHTS

Catalytic etherification of glycerol (GLY) with isobutylene (IB) was investigated.

- Ethers of glycerol as oxygenates additives for diesel fuel were prepared.
- Hyflon[®] based catalysts supported on spherical silica (SSHC) have been developed.
- ► Catalysts prepared on spherical silica work much better than *A*-15.
- Catalysts were found to be stable and easily reusable.

ARTICLE INFO

Article history:

Received 23 December 2011 Received in revised form 4 April 2012 Accepted 27 April 2012 Available online 7 May 2012

Keywords: Spherical silica Hyflon catalysts Glycerol conversions Biofuels production Biodiesel

ABSTRACT

Etherification of glycerol (GLY) with isobutylene (IB) to produce biofuels was investigated in liquid phase using spherical silica supported Hyflon[®] catalysts (SSHC). As reference catalyst, Amberlyst[®] 15 (A-15) acid ion-exchange resin was used. Experiments were carried out in batch mode at a reaction temperature ranging from 323 to 343 K. SSHC were found to be very effective systems in etherification of glycerol with IB, providing cumulative *di*- and *tri*-ethers yields higher than that obtained by using A-15 catalyst. Furthermore, such catalysts were stable and easily reusable; no leaching of active phase was observed. The formation of *poly*-substituted ethers, suitable additives for conventional fuels, was favored by operating at an isobutylene/glycerol molar ratio >3 and low reaction time (<6 h); however, the concentration of *mono*-ether reached values lower than 3 wt% only when SSHC catalyst was used. Turnover frequency of glycerol (TOF_{GLY}) highlighted that SSHC systems were much more active than *A*-15 catalyst: the accessibility and nature of active sites and the surface properties of catalysts were indicated as the main factors affecting the catalytic behavior. A lower acid site density of SSHC than that of *A*-15 catalyst was decisive in preventing the occurrence of oligomerization reaction which leads to the formation of *di*-isobutylene (DIB), precursors of gummy products.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Transesterification processes to produce clean fuels by using vegetable oils and methanol as raw materials produce, along with fatty acid methyl esters (FAME), about 10 wt.% of glycerol as

byproduct. Therefore, in order to maximize the economy of the process, new catalytic systems for glycerol conversion into added-value products need to be found (Pathak et al., 2010; Zheng et al, 2008; Behr et al., 2008). Among the transformation routes proposed, the production of biofuels from glycerol by etherification has received particular attention (Alcàntara et al., 2000; Bonura et al., 2007; Frusteri et al., 2009; Gaudin et al., 2011; Janaun and Elles, 2010; Klepáčová et al., 2003, 2005, 2006; Knifton and

^{*} Corresponding author. Tel.: +39 090 624 233; fax: +39 090 624 247. *E-mail address:* francesco.frusteri@itae.cnr.it (F. Frusteri).

^{0960-8524/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biortech.2012.04.103