Chemical Engineering Journal 218 (2013) 73-80

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

Synthesis, characterization, and visible photocatalytic performance of Zn₂GeO₄ nanobelts modified by CdS quantum dots

Xiao-Liang Mao^{a,b}, Dong-Xing Xu^{a,b}, Ming-Lai Fu^{a,*}, Baoling Yuan^{c,*}, Jian-Wen Shi^a, Hao-Jie Cui^a

^a Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799, Jimei Road, Xiamen, Fujian 361021, China ^b College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

^c College of Civil Engineering, Huaqiao University, No. 668, Jimei Road, Xiamen, Fujian 361020, China

HIGHLIGHTS

The first example of quantum dots to sensitize the photocatalyst of Zn₂GeO₄.

- Zn₂GeO₄/CdS exhibited higher photocatalytic activity under visible light.
- ► The composite shows no obvious deactivation after three recycles experiments.

ARTICLE INFO

Received in revised form 16 November 2012

Received 7 August 2012

Accepted 10 December 2012

Available online 19 December 2012

Article history:

Keywords:

Photocatalysis

Visible light Rhodamine B

Zn₂GeO₄

CdS

G R A P H I C A L A B S T R A C T

 Zn_2GeO_4 nanobelts modified by CdS quantum dots (Zn_2GeO_4/CdS) were prepared successfully by chemical bath deposition. The as-obtained samples demonstrated high photocatalytic performance to decolorize dye wastewater under visible light irradiation ($\lambda > 400$ nm).

ABSTRACT

 Zn_2GeO_4 nanobelts modified by CdS quantum dots (Zn_2GeO_4/CdS) were prepared successfully by chemical bath deposition. The novel photocatalyst was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–Vis diffuse reflectance spectroscopy. It was found that Zn_2GeO_4/CdS consisted of uniform rhombohedral phase Zn_2GeO_4 nanobelts with highly dispersed cubic phase CdS quantum dots, and the Zn_2GeO_4/CdS exhibited strong visible light absorption at about 510 nm. The photocatalytic activities of the catalysts were evaluated by the discoloration of Rhodamine B under visible light illumination and were compared with that of pure Zn_2GeO_4 nanobelts. The results suggested that the composite photocatalyst had much higher photocatalytic activities than pure Zn_2GeO_4 nanobelts under irradiation of visible light. Meanwhile, no obvious deactivation of Zn_2GeO_4/CdS was observed after the three recycles experiments in photodegradation of RhB. The possible mechanism of visible light photocatalytic degradation is also proposed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For past decades, the research of various photocatalytic materials has attracted much attention due to their potential application in clean energy sources and degradation of environmental pollutants [1–3]. Currently, TiO_2 is undoubtedly the most widely used photocatalyst because of its biological and chemical stability, non-toxicity, cost effectiveness and high activity [4–6]. However, it still involved some disadvantages, such as limited activity and reduced sensitivity to the visible region of sunlight [7]. Therefore, recently new photocatalysts have been extremely explored that

^{*} Corresponding authors. Tel.: +86 592 6190762; fax: +86 592 6190977 (M. -L. Fu), tel.: +86 18906015873; fax: +86 592 6162698 (B. Yuan).

E-mail addresses: mlfu@iue.ac.cn (M.-L. Fu), blyuan@hqu.edu.cn (B. Yuan).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.12.031