Chemical Engineering Journal 219 (2013) 225-237

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Photo-Fenton like degradation of tetrabromobisphenol A with graphene—BiFeO₃ composite as a catalyst

Chemical Enaineerina

Journal

Junjian An^a, Lihua Zhu^a, Nan Wang^{a,*}, Zhou Song^a, Zeyu Yang^b, Dongyun Du^b, Heqing Tang^{b,*}

^a College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China ^b Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China

HIGHLIGHTS

- Graphene—BiFeO₃ composite is prepared by assembling BiFeO₃ nanoparticles on graphene sheets.
- The composite exhibits larger specific surface area than BiFeO₃.
- The composite exhibits much higher photo-Fenton like catalytic activity than BiFeO₃.
- TBBPA is efficiently degraded by photo-Fenton like process catalyzed by the composite.

ARTICLE INFO

Article history: Received 2 August 2012 Received in revised form 4 January 2013 Accepted 5 January 2013 Available online 12 January 2013

Keywords: Graphene BiFeO₃ Photo-Fenton process Oxidative degradation Tetrabromobisphenol A

G R A P H I C A L A B S T R A C T

Graphene—BiFeO₃ composites were synthesized by growing BiFeO₃ nanoparticles on graphene sheets. The composite exhibited good photo-Fenton like catalytic activity.

ABSTRACT

Graphene—BiFeO₃ nanoscaled composites were prepared with a sol–gel method and evaluated as highly efficient photo-Fenton like catalyst under visible light irradiation. The graphene—BiFeO₃ composite had a specific surface area of $35.07 \text{ m}^2 \text{ g}^{-1}$, being considerably larger than that of BiFeO₃ nanoparticles (7.50 m² g⁻¹). The composite exhibited excellent visible light-Fenton like catalysis activity, being influenced by calcination temperature, graphene—BiFeO₃ composite yielded fast degradation of tetrabromobi-sphenol A with a apparent rate constant of 1.19 min^{-1} , which was 5.43 and 3.68 folds of that achieved by using BiFeO₃ and the mixture of BiFeO₃ and graphene, respectively. The significantly enhanced visible light-Fenton like catalytic properties of the graphene—BiFeO₃ composite in comparison with that of BiFeO₃ was attributed to a large surface area, much increased adsorption capacity and the strong electron transfer ability of graphene in the composite.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Carbon materials including graphite, carbon black, activated carbon, carbon nanotubes, carbon nanofibers, etc., have aroused great attentions as catalyst carriers in the field of heterogeneous catalysis [1–3]. Graphene is a new type of carbon materials. Owing to the perfect two-dimension cycle planer structure, graphene can function as an excellent catalyst carrier. Mastalir et al. prepared

Pd—graphene oxide nanoparticles by fixing Pd nanoscaled particles on graphene oxide and found that the Pd—graphene oxide nanoparticles showed high catalytic activity and selectivity towards the hydrogenation of ethyne in liquid phase [4]. Recently, TiO₂graphene oxide composites were well reported for their applications in photocatalytic degradation of pollutants [5–7]. Graphene was also used to prepare composites with C₃N₄ [8], ZnS [9], ZnO [10] and La₂Ti₂O₇ [11] to improve photocatalytic performances of these catalysts.

Heterogeneous photo-Fenton processes have been found to show strong catalytic ability to remove organic pollutants. Bossmann et al. studied the reaction mechanism of the oxidative degradation of polyvinyl alcohol (PVA) by the photochemically enhanced

^{*} Corresponding authors. Tel./fax: +86 27 87543632 (N. Wang), tel./fax: +86 27 67843323 (H. Tang).

E-mail addresses: wnanhust@yahoo.com.cn (N. Wang), hqtang62@yahoo.com.cn (H. Tang).

^{1385-8947/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2013.01.013