Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

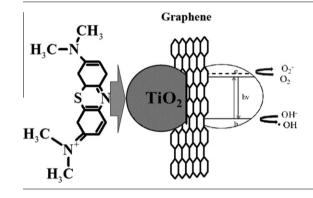
journal homepage: www.elsevier.com/locate/cej

Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts

Shizhen Liu, Hongqi Sun, Shaomin Liu, Shaobin Wang*

Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

HIGHLIGHTS


G R A P H I C A L A B S T R A C T

- Graphene-titania composites (G-TiO₂) were synthesized by a sol-gel method.
- G-TiO₂ catalysts showed high efficiency in degradation of methylene blue under visible light.
- ► In situ prepared G-TiO₂ presented higher activity than that of G-TiO₂(P25).
- ► The mechanism of graphene in the enhanced visible light photocatalytic activity was proposed.

ARTICLE INFO

Article history: Received 19 July 2012 Received in revised form 29 October 2012 Accepted 30 October 2012 Available online 7 November 2012

Keywords: Graphene TiO₂ Methylene blue Photocatalysis Visible light

ABSTRACT

Several graphene–titania composites (G–TiO₂) were synthesized by a sol–gel method using titanium isopropoxide (or P25) as Ti-precursors and reduced graphene oxide (RGO). The structural, morphological, and physicochemical properties of the samples were thoroughly investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), UV–vis diffuse reflectance (UV–vis DRS), and thermogravimetric-differential thermal analysis (TG-DTA). A significant increase in light absorption to visible light was observed by G–TiO₂ compared with that of naked TiO₂. The photocatalytic activity of G–TiO₂ in methylene blue bleaching under visible light (>430 nm) is much enhanced. G–TiO₂ synthesized from titanium isopropoxide hydrolysis presented higher activity than that of G–TiO₂(P25). Contribution of graphene on the enhancement of visible-light photocatalytic activity of the composite was discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalytic decomposition of various organic compounds in aqueous solutions has been widely studied and many nanomaterials have been developed as photocatalysts for this technology [1-4]. TiO₂ has been intensively investigated as a photocatalyst for environmental clean-up and solar energy conversion. However, TiO₂ can only decompose aromatic organics into CO₂ and H₂O under UV-illumination and suffers from a barrier in responding

to visible light at wavelengths higher than 387 nm due to a large band gap of 3.2 eV. As a result, only 3-5% of the solar energy that reaches onto the earth surface can be utilized. The common strategies for extending the absorption threshold of TiO₂ to visible light region include doping, coupling or anchoring with other organic or inorganic elements such as nitrogen, carbon, halogen, and metals into the titania lattice [5–11].

Combination of different types of carbon with TiO₂ has been suggested as a promising method for an enhanced photocatalytic performance [12,13]. In the past a few years, graphene as a novel carbonaceous nanomaterial has attracted more and more interests due to its unique and excellent performance in chemical, structural

^{*} Corresponding author. Tel.: +61 8 93663776; fax: +61 8 92662681. *E-mail address:* shaobin.wang@curtin.edu.au (S. Wang).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.10.058