Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Impact of Fe⁰ amendment on methylene blue discoloration by sand columns

K. Miyajima^a, C. Noubactep^{a,b,*}

^a Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany
^b Kultur und Nachhaltige Entwicklung CDD e.V., Postfach 1502, D-37005 Göttingen, Germany

HIGHLIGHTS

▶ Reliable methods for designing Fe⁰ filtration systems are still lacking.

- ▶ Inert admixtures are mostly to account for construction width requirements.
- \blacktriangleright A recent concept for Fe⁰ bed design is verified here for the first time.
- ▶ The suitability of sand to sustain Fe⁰ reactivity in dynamic systems is corroborated.
- ▶ The Fe⁰ volumetric proportion should be between 30% and 50%.

ARTICLE INFO

Article history: Received 28 August 2012 Received in revised form 17 November 2012 Accepted 30 November 2012 Available online 8 December 2012

Keywords: Fe⁰/sand filters Particle cementation Permeability loss Water treatment Zero-valent iron

ABSTRACT

The influence of metallic iron (Fe⁰) amendment on the efficiency of sand to discolor a 2.0 mg L⁻¹ methylene blue (MB) solution was investigated in column studies. MB was used as an indicator to identify the optimum Fe⁰/sand ratio for efficient filtration systems. Columns contained 0, 100 or 200 g of a Fe⁰ material. The volumetric proportion of Fe⁰ in the reactive layer of the columns with 100 g of material varied from 10% to 100%. Results showed that, Fe⁰ amendment significantly impaired MB discoloration by sand for experiments lasting for up to 132 days. Early MB breakthrough in Fe⁰/sand columns delineated the paramount importance of particle cementation, which has caused preferential flow with a negative impact on discoloration efficiency. The most efficient Fe⁰/sand mixtures were the ones with 30–50% Fe⁰ (v/v). These volumetric ratios correspond 33–41% weight ratios showing that the commonly used 1:1 weight ratio (50%) may not be optimal. Further research with compounds exhibiting different affinities to both Fe⁰ and sand is needed before this observation can be generalized.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Metallic iron (Fe⁰) has been demonstrated in numerous studies to represent one of the best available materials for subsurface permeable reactive barriers [1–6]. Fe⁰ is also a very efficient material for above-ground wastewater treatment and safe drinking water provision [7–9]. New applications of Fe⁰ for water treatment usually involve extensive pilot-scale studies although several models have been developed for predicting the performance of Fe⁰ material [10–13]. Moreover, despite 20 years of intensive research, the question as to whether iron should be used alone or mixed to a cost efficient material is yet to be properly addressed [14–24]. The suitability of Fe^0 for water treatment arises from its aqueous instability (Eqs. (1)–(4)). Immersed Fe^0 is oxidized by water according to Eq. (1):

(1)	$+H_2\uparrow$	$^{+} \Rightarrow \mathrm{Fe}^{2+}$	$Fe^0 + 2I$
(1	$+H_2\uparrow$	$^{+} \Rightarrow \mathrm{Fe}^{2+}$	$Fe^0 + 2I$

$$Fe^{0} + 1/2O_{2} + H_{2}O \Rightarrow Fe^{2+} + 2HO^{-}$$
 (2)

$$2Fe^{2+} + 1/2O_2 + H_2O \Rightarrow 2Fe^{3+} + 2HO^{-}$$
(3)

$$Fe^{n+} + nHO^{-} \Rightarrow Fe(OH)_n \Rightarrow FeOOH/Fe_xO_y$$
 (4)

In the presence of dissolved O_2 the more favorable redox reaction is given by Eq. (2), but reaction following Eq. (1) still significantly occurs due to the abundance of water [25]. Moreover, it has been traceably shown that even under external oxic conditions, Fe⁰ is oxidized by water (Eq. (1)) and Fe^{II} by O_2 (Eq. (3)) [26]. In other words, accelerated Fe⁰ oxidation under oxic conditions results from Fe^{II} consumption by O_2 (Le Chatelier's principle) and not from any direct interactions between Fe⁰ and O_2 [26,27].

Chemical

Engineering Journal

^{*} Corresponding author at: Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany. Tel.: +49 551 39 3191; fax: +49 551 39 9379.

E-mail address: cnoubac@gwdg.de (C. Noubactep).

^{1385-8947/\$ -} see front matter \odot 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.11.128