Contents lists available at SciVerse ScienceDirect

## Chemical Engineering Journal

Chemical Engineering Journal



# Hydroperoxide production from linoleic acid by heterologous *Gaeumannomyces graminis tritici* lipoxygenase: Optimization and scale-up



Juan José Villaverde <sup>a,\*</sup>, Vincent van der Vlist<sup>b</sup>, Sónia A.O. Santos<sup>a</sup>, Thomas Haarmann<sup>c</sup>, Kim Langfelder<sup>c</sup>, Minni Pirttimaa<sup>d</sup>, Antti Nyyssölä<sup>d</sup>, Sirpa Jylhä<sup>d</sup>, Tarja Tamminen<sup>d</sup>, Kristiina Kruus<sup>d</sup>, Leo de Graaff<sup>b</sup>, Carlos Pascoal Neto<sup>a</sup>, Mário M.Q. Simões<sup>e</sup>, M.R.M. Domingues<sup>e</sup>, Armando J.D. Silvestre<sup>a</sup>, Jasmin Eidner<sup>c</sup>, Johanna Buchert<sup>d</sup>

<sup>a</sup> CICECO and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

<sup>b</sup> Wageningen University, Laboratory of Systems and Synthetic Biology, Fungal Systems Biology, Dreijenplein 10, 6703 HB Wageningen, The Netherlands

<sup>c</sup> AB Enzymes GmbH, Feldbergstrasse 78, D-64293 Darmstadt, Germany

<sup>d</sup> VTT Biotechnology, P.O. Box 1500, FIN-02044 VTT, Finland

<sup>e</sup> QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

### HIGHLIGHTS

 graminis lipoxygenase.
Gaeumannomyces graminis lipoxygenase was obtained recombinantly in Trichoderma reesei.

concentrations.

3.6 g/(L h).

Hydroperoxides were produced from

linoleic acid by Gaeumannomyces

 Yield and regioselectivity were optimized using 10 g/L linoleic acid.
The process was investigated at industrially relevant substrate

At 300 g/L linoleic acid, the yield was 40% and the volumetric productivity

## G R A P H I C A L A B S T R A C T



### ARTICLE INFO

Article history: Received 20 August 2012 Received in revised form 15 November 2012 Accepted 20 November 2012 Available online 29 November 2012

Keywords: Lipoxygenase Linoleic acid Fatty acid hydroperoxides Optimization Scale-up

## ABSTRACT

Linoleic acid was converted into hydroperoxides by a *Gaeumannomyces graminis tritici* lipoxygenase produced recombinantly in *Trichoderma reesei*. Hydroperoxide production was optimized using a face-centred experimental design in order to study the effects of pH, temperature and time on the conversion of linoleic acid into four regioisomeric hydroperoxyoctadecadienoic acids (HPODE): 13-(Z,E)-, 9-(E,Z)-, 13-(E,E)-, 9-(E,E)-HPODE. Fitting equations described satisfactorily the system behavior and showed that reaction time was the most influencing independent variable. A set of independent variables (pH = 6.7, temperature = 23.9 °C and time = 18 h) allowed to obtain high yields of hydroperoxides (88.0%) with a good selectivity for the 13-(Z,E)-HPODE isomer (47.4%) when the initial substrate concentration was 10 g/L. The production was further investigated using industrially relevant linoleic acid concentrations (100–300 g/L) leading to HPODE yields of ~40% and the volumetric productivity 3.6 g/(L h), and a selectivity for 13-(Z,E)-HPODE of around 74%.

 $\ensuremath{\textcircled{}^\circ}$  2012 Elsevier B.V. All rights reserved.

\* Corresponding author. Present address: DTEVPF, Unit of Plant Protection Products, INIA, Ctra. de La Coruña, Km 7.5, 28040 Madrid, Spain. Tel.: +34 91 347 87 67; fax: +34 91 347 14 79.

E-mail address: juanjose.villaverde@inia.es (J.J. Villaverde).

## 1. Introduction

Plant oils containing fatty acids and their glycerides are valuable and abundant renewable raw materials. In 2006, 127 million

<sup>1385-8947/\$ -</sup> see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.11.090