
Chemical Engineering Journal 214 (2013) 319-326

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

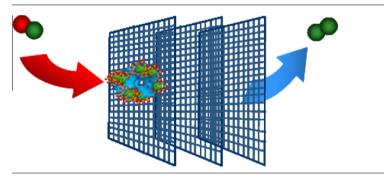
Advantages of a wire gauze structured reactor with a zeolite (Cu-USY) catalyst for NH_3 -SCR of NO_x

P.J. Jodłowski^{a,*}, J. Kryca^{a,b}, A. Rogulska^a, B. Gil^a, M. Iwaniszyn^b, J. Łojewska^a, A. Kołodziej^{b,c}

^a Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków, Poland
^b Institute of Chemical Engineering of the Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
^c Faculty of Civil Engineering, Opole University of Technology, ul. Katowicka 48, 45-061 Opole, Poland

HIGHLIGHTS

- Plug-flow model with temperature suitable for description of wiregauze reactor.
- Wire gauze internals decrease reactor length by 10 times comparing to monolith.
- ► Cu-USY catalyst highly active and stable in NH₃-SCR of NO_x.
- Cu-USY activity of higher than commercial vanadium catalyst.


ARTICLE INFO

Article history: Received 22 June 2012 Received in revised form 9 October 2012 Accepted 10 October 2012 Available online 10 November 2012

Keywords: NH₃-SCR Ultra-stabilized zeolite Y ZSM-5 Structured reactors Biogas turbines Modelling

1. Introduction

G R A P H I C A L A B S T R A C T

ABSTRACT

Metal wire gauzes as catalyst supports and structured reactor internals offer a number of advantages over monolithic reactors. Structured catalytic reactors based on wire gauzes are explored in this study for the control of NO_x emissions from a stationary engine fuelled with gas generated from a biomass gasification process. Simulations are performed on reactors filled with (a) wire gauzes, (b) multi-channel monoliths, and (c) a packed bed with 2 mm beads, for the NH_3 -SCR process using the kinetic data obtained for copper-exchanged ultra-stabilized zeolite Y catalyst (Cu-USY). The purpose of this procedure is to select the most efficient reactor internals and to assess the necessary reactor length allowing maximum conversion of NO_x . These simulations show that optimum performance is obtained when the wire gauze support is employed. The results also show that when the Cu-USY catalyst (very active in SCR) is used in combination with a wire gauze structure, the combined effects of higher rates of reaction with higher rates of heat and mass transfer may significantly increase the NO_x conversion.

© 2012 Elsevier B.V. All rights reserved.

The motivation for the present investigation was the observation that renewable sources of biomass (e.g. forestry residue, municipal waste) can be gassified to obtain a product, which contains H_2 and CO (with some hydrocarbons) as the desirable components. Various approaches to gasification together with a discussion of the problems associated with the development of this

* Corresponding author. E-mail address: przemyslaw.jodlowski@uj.edu.pl (P.J. Jodłowski). technology are widely described in [1]. Depending on the process type, other gases such as CO_2 , N_2 , and CH_4 may be present in biogas. In addition, biogas may contain water vapour and a range of trace contaminants including sulphur. Since biogas is used in a wide range of applications including gas engine, gas turbine and fuel cell, these contaminations need to be previously removed. Biogas engines are increasingly exploited to produce electricity and hot water/oil, thereby providing energy at the local level. In Europe, gas emissions must meet new stricter environmental regulations. An example of such a policy is the Waste Incineration Directive (2000/76/EC) also known as the WID limit. In light of

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.10.095