On 4-ordered 3-regular graphs ${ }^{\text {* }}$

Ming Tsai ${ }^{\text {a }}$, Tsung-Han Tsai ${ }^{\text {a }}$, Jimmy J.M. Tan ${ }^{\text {a }}$, Lih-Hsing Hsu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Computer Science, National Chiao Tung University, Hsinchu, 300, Taiwan ROC
${ }^{\mathrm{b}}$ Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan ROC

ARTICLE INFO

Article history:

Received 8 October 2010
Received in revised form 13 February 2011
Accepted 27 April 2011

Keywords:

k-ordered
Cubic graphs

Abstract

A graph G is k-ordered if for any sequence of k distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ of G there exists a cycle in G containing these k vertices in the specified order. In 1997, Ng and Schultz posed the question of the existence of 4-ordered 3-regular graphs other than the complete graph K_{4} and the complete bipartite graph $K_{3,3}$. In 2008, Meszaros solved the question by proving that the Petersen graph and the Heawood graph are 4-ordered 3-regular graphs. Moreover, the generalized Honeycomb torus $\operatorname{GHT}(3, n, 1)$ is 4 -ordered for any even integer n with $n \geq 8$. Up to now, all the known 4 -ordered 3 -regular graphs are vertex transitive. Among these graphs, there are only two non-bipartite graphs, namely the complete graph K_{4} and the Petersen graph. In this paper, we prove that there exists a bipartite non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently large even integer n. Moreover, there exists a non-bipartite non-vertex-transitive 4-ordered 3-regular graph of order n for any sufficiently large even integer n.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For the graph definitions and notation, we follow the definitions and notation of [1]. Let $G=(V, E)$ be a graph if V is a finite set and E is a subset of $\{(u, v) \mid(u, v)$ is an unordered pair of $V\}$. We say that V is the vertex set and E is the edge set. Two vertices u and v are adjacent if $(u, v) \in E$. A graph is of order n if $|V|=n$. The degree of a vertex u in G, denoted by deg ${ }_{G}(u)$, is the number of vertices adjacent to u. A graph G is k-regular if $\operatorname{deg}_{G}(x)=k$ for any $x \in V$. A cubic graph is a 3-regular graph. A path between vertices v_{0} and v_{k} is a sequence of vertices represented by $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ with no repeated vertex and (v_{i}, v_{i+1}) is an edge of G for every $i, 0 \leq i \leq k-1$. We also write the path $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ as $\left\langle v_{0}, \ldots, v_{i}, Q, v_{j}, \ldots, v_{k}\right\rangle$ where Q is a path from v_{i} to v_{j}. A cycle is a path with at least three vertices such that the first vertex is the same as the last one.

A graph G is k-ordered if for any sequence of k distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ of G there exists a cycle in G containing these k vertices in the specified order. The concept of k-ordered graphs was introduced in 1997 by Ng and Schultz [2]. Previous results focus on the conditions for minimum degree and forbidden subgraphs that imply k-ordered graphs [3-6]. A comprehensive survey of the results can be found in [6].

In [2], Ng and Schultz posed the question of the existence of 4 -ordered 3-regular graphs other than K_{4} and $K_{3,3}$. In [7], Meszaros solved the question by proving that the Petersen graph and the Heawood graph are 4-ordered 3-regular graphs. Moreover, the generalized Honeycomb torus $\operatorname{GHT}(3, n, 1)$ is 4 -ordered if n is an even integer with $n \geq 8$. Up to now, all the known 4-ordered 3-regular graphs are vertex transitive. Among these graphs, there are only two non-bipartite graphs,

[^0]
[^0]: This work was supported in part by the National Science Council of the Republic of China under Contract 97-2221-E-126-001-MY3.

 * Corresponding author.

 E-mail address: lhhsu@cs.pu.edu.tw (L.-H. Hsu).

