Contents lists available at SciVerse ScienceDirect

Colloids and Surfaces A: Physicochemical and Engineering Aspects

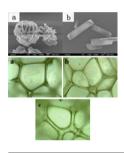
journal homepage: www.elsevier.com/locate/colsurfa

Controllable synthesis of three kinds of zinc borates and flame retardant properties in polyurethane foam

Yao Cui, Xiaoli Liu, Yumei Tian*, Na Ding, Zichen Wang

College of Chemistry, Jilin University, Changchun 130012, China

HIGHLIGHTS


- ► A new method for preparing 2ZnO·3B₂O₃·3.5H₂O has been proposed.
- The morphologies of three types of zinc borates are peculiar.
- Zinc borates transform with each other by appropriately controlled.
- Polyurethane/zinc borate materials have excellent retardant properties.

ARTICLE INFO

Article history: Received 28 May 2012 Received in revised form 28 July 2012 Accepted 15 August 2012 Available online 24 August 2012

Keywords: Zinc borate Controllable synthesis Polyurethane Flame retardancy

GRAPHICAL ABSTRACT

ABSTRACT

Depending on the molar ratios of ZnO:B₂O₃:H₂O, zinc borates can be classified into many kinds of categories. In this paper, we successfully synthesized three kinds of zinc borates ($2ZnO.3B_2O_3.7H_2O$, $2ZnO.3B_2O_3.5H_2O$ and $3ZnO.3B_2O_3.5H_2O$) by controlling the reaction conditions, using Na₂B₄O₇·10H₂O, H₃BO₃ and Zn(NO₃)₂·6H₂O as the reactants. These three zinc borates transform with each other if the reaction conditions were appropriately controlled. The morphologies of three products are peculiar. The synthesized 2ZnO.3B₂O₃·3.5H₂O is anomalous spheric-like or flaky, 3ZnO.3B₂O₃·5H₂O is flower-like, and 2ZnO.3B₂O₃·7H₂O is club-shaped. According to the thermodynamic performance of three kinds of zinc borates, we selected 2ZnO.3B₂O₃·3.5H₂O which had the best flame retardant properties, then doped it into the polyurethane to synthesize polyurethane/zinc borate was increased by 54 °C before 300 °C. Furthermore, the maximum decomposition temperature was increased by 104 °C after 400 °C.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Zinc borates are usually used as flame retardant, afterglow suppressant, smoke suppressant, and antitracking agent in both halogen-containing and halogen-free polymers [1–6]. Depending on the reaction conditions, a host of zinc borates with different molar ratios of ZnO:B₂O₃:H₂O can be produced [7–15]. The most widely used zinc borates have the molecular formula as follows: 2ZnO·3B₂O₃·7H₂O, 2ZnO·3B₂O₃·3.5H₂O, 4ZnO·B₂O₃·H₂O [16,17], 2ZnO·3B₂O₃·3H₂O [7,18]. The dehydration temperatures

of $4ZnO \cdot B_2O_3 \cdot H_2O$ and $2ZnO \cdot 3B_2O_3 \cdot 3.5H_2O$ are $410 \,^{\circ}C$ and $290 \,^{\circ}C$, respectively, which enable them to prefer in the polymers that require high processing temperature [19]. Compared with $2ZnO \cdot 3B_2O_3 \cdot 3.5H_2O$, $2ZnO \cdot 3B_2O_3 \cdot 7H_2O$ is not stable in higher temperature, but it is economical while the processing conditions allow. Zinc borate ($2ZnO \cdot 3B_2O_3 \cdot 3.5H_2O$) in general is produced with the reaction between zinc oxide and boric acid, with high reaction temperature and high reaction concentration.

In our study, we got 2ZnO·3B₂O₃·3.5H₂O by reacting between Na₂B₄O₇·10H₂O, H₃BO₃ and Zn(NO₃)₂·6H₂O for the first time. We also synthesized the other two zinc borates, that is, 2ZnO·3B₂O₃·7H₂O and 3ZnO·3B₂O₃·5H₂O through the fine tuning of the reaction conditions. According to the knowledge we have learned, the reports of the composition preparation of

^{*} Corresponding author. Tel.: +86 431 85155358; fax: +86 431 85155358. *E-mail address*: tianym@jlu.edu.cn (Y. Tian).

^{0927-7757/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.colsurfa.2012.08.028