

Contents lists available at SciVerse ScienceDirect

Colloids and Surfaces A: Physicochemical and Engineering Aspects

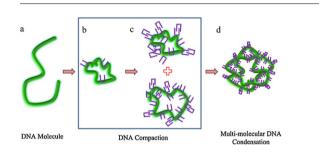
journal homepage: www.elsevier.com/locate/colsurfa

DNA compaction to multi-molecular DNA condensation induced by cationic imidazolium gemini surfactants

Ting Zhou^{a,b}, Guiying Xu^{a,*}, Mingqi Ao^a, Yanlian Yang^{b,**}, Chen Wang^b

^a Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, PR China
^b National Center for Nanoscience and Technology, Beijing 100190, PR China

HIGHLIGHTS


GRAPHICAL ABSTRACT

- An evolution from DNA compaction to multi-molecular DNA condensation induced by [C_n-4-C_nim]Br₂ is identified and its mechanism is discussed.
- ► $[C_n-4-C_n im]Br_2$ as novel imidazolium gemini surfactants can interact with DNA *via* electrostatic, hydrophobic and $\pi-\pi$ interaction.
- ► The stronger interaction between DNA and [C_n-4-C_nim]Br₂ with longer tails demonstrates the important contribution of the hydrophobic interaction.

ARTICLE INFO

Article history: Received 5 May 2012 Received in revised form 27 August 2012 Accepted 29 August 2012 Available online 8 September 2012

Keywords: DNA Cationic imidazolium gemini surfactants ([Cn-4-Cnim]Br₂) Condensation

ABSTRACT

The compaction and condensation of DNA induced by cationic imidazolium gemini surfactants ($[C_n-4-C_nim]Br_2$, n=10, 12, 14) at different charge ratios have been investigated by dynamic light scattering (DLS), *zeta* potential, circular dichroism (CD), and ethidium bromide exclusion assay. Upon addition of $[C_n-4-C_nim]Br_2$, DNA molecules undergo the process from compaction to multi-molecular condensation accompanied by conformation change, which could be proved by the DLS and CD results. The charge density changes in *zeta* potential measurements indicated the impact of the electrostatic interaction in DNA-surfactant complex. The comparison between DNA compaction and condensation by $[C_n-4-C_nim]Br_2$ with different tail lengths demonstrated the important contribution of the hydrophobic interaction. The EtBr exclusion assay indicates the $\pi-\pi$ interaction between imidazolium groups of $[C_n-4-C_nim]Br_2$ and DNA aromatic rings also plays a role in the DNA/ $[C_n-4-C_nim]Br_2$ complex formation. The impact of the different interactions on the DNA compaction and condensation by gemini surfactants would shed light on their potential applications in gene delivery.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Gene therapy has been demonstrated as a potential treatment of both genetic and acquired diseases, while the effective delivery of the therapeutic genes into target cells *in vitro* and *in vivo* is still one of the greatest challenges in gene therapy. It has been confirmed that the key parameters for achieving effective gene therapy is the size of the DNA condensates [1,2]. It is also necessary to neutralize the negative charges of DNA, because an overall positive charge significantly improves the docking of the DNA condensate on the primarily negatively charged cell membranes [3]. As an anionic polyelectrolyte, due to the highly negative charge of phosphate backbone, DNA can bind a variety of cationic agents, such as simple lipid-like cations [4,5], cationic surfactants [6–9], polycations [10], dendrimers [11], nanoparticles [12], and peptides

^{*} Corresponding author. Tel.: +86 531 88365436; fax: +86 531 88564750.

^{**} Co-corresponding author. Tel.: +86 10 82545559.

E-mail addresses: xuguiying@sdu.edu.cn (G. Xu), yangyl@nanoctr.cn (Y. Yang).

^{0927-7757/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.colsurfa.2012.08.060