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a b s t r a c t

In this work, a generic substructuring algorithm is employed to construct global block-diagonal

preconditioners for BEM systems of equations. In this strategy, the allowable fill-in positions are those

on-diagonal block matrices corresponding to each BE subregion. As these subsystems are independently

assembled, the preconditioner for a particular BE model, after the LU decomposition of all subsystem

matrices, is easily formed. So as to highlight the efficiency of the preconditioning proposed, the Bi-CG

solver, which presents a quite erratic convergence behavior, is considered. In the particular applications

of this paper, 3D representative volume elements (RVEs) of carbon-nanotube (CNT) composites are

analyzed. The models contain up to several tens of thousands of degrees of freedom. The efficiency and

relevance of the preconditioning technique is also discussed in the context of developing general

(parallel) BE codes.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Applying iterative solvers to large-order engineering problems
has been intensively pursued in the last decades, mainly because
their unquestionable appeal to solve truly large models [1,2].
Herein, the parallelism embedded in them allied with the today’s
parallel computer architectures plays a decisive role, so that it can
be well stated that developing fast scalable (preconditioned)
parallel Krylov solvers is a key point for getting high-fidelity
solution for large-order complex engineering problems. In these
cases, direct solvers may be exceedingly expensive concerning
both memory and CPU time, and their parallel implementation is
awkward.

For general non-symmetric matrices, like BE matrices, based
on the number of terms involved in the iterative formulas, the
Krylov solvers can be subdivided in two broad classes of
algorithms: long-recurrence algorithms (GMRES and variants)
and short-recurrence ones (Bi-CG and variants). Over the last
several decades, milestone contributions in these algorithms have
been definitely given by the following works: the Lanczos method
(by Lanczos in 1952) [3], the Bi-CG method (by Fletcher in 1976)
[4], the GMRES method (by Saad and Schultz in 1986) [5], the CGS

method (by Sonneveld in 1989) [6], the Bi-CGSTAB (by van der Vosrt
in 1992) [7], and the Bi-CGSTAB(l) (by Sleijpen and Fokkema in
1993) [8]. Of course, in this period of time, a series of other works
that significantly contributed for increasing the efficiency of
Krylov solvers have also been published, including those related
to particular applications to symmetric definite matrices.

Particularly for BEM systems of equations, the first successful
applications of iterative solvers were reported at the end of the
80s and beginning of the 90s [9–12], wherein diagonal-precondi-
tioned Bi-CG [9–10,12], and preconditioned GMRES [11] methods
were used. According to the authors’ knowledge, before these
works, only basic iterative methods as the Jacobi or Gauss–Seidel
methods, or at most the CGN solver, which consists of applying
the CG method to the normal equations, AT Ax¼AT b, had been
considered [13–14]. A patent disadvantage of these iterative
solvers are the non-reliability regarding convergence, so that they
actually cannot be regarded as general-purpose solvers for
practical applications. In fact, applying basic iterative methods,
convergence is assured only if the spectral radius of the
corresponding iteration matrix is less than 1, which is not the
case for general systems. On the other hand, considering the CGN
has the disadvantage of squaring the condition number of the
original system Ax¼b, which may cause the iterative process fail
to converge. The Bi-CG and GMRES methods, and their variants
(or combinations) are then the remaining alternatives for deriving
general-purpose solvers for BEM equations.

In fact, long-term recurrence methods as GMRES and variants
should be avoided because of memory requirements for large
problems and non-rare convergence stagnation in practice.
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