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a b s t r a c t

The Helmholtz equation always suffers the so-called ‘pollution effect’, which is directly related to the

dispersion for high wavenumber. The element-free Galerkin method (EFGM) has been successfully

applied to acoustic problems and significantly reduced the dispersion error. Unfortunately, it is

computationally expensive. In this paper, a two-dimensional (2-D) dispersion analysis is performed

on the meshless Galerkin least-square (MGLS) method. This method is based on the EFGM at the

domain boundary and the least-square method in the interior. Numerical examples on an L-shaped

cavity demonstrate that while retaining the accuracy of the EFGM, the computational cost can be

significantly reduced.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Helmholtz equation is an elliptic partial differential
equation, which is important in a variety of applications involving
time-harmonic wave propagation phenomena such as acoustic
cavity and radiation wave. Accurate and efficient numerical
simulation of acoustic problems governed by the Helmholtz
equation is still an open problem especially for medium frequen-
cies. By using the standard finite element method (FEM), the
numerical phase accuracy deteriorate rapidly as the wavenumber,
while the boundary element method (BEM) suffers from high
computational costs because of the full and non-symmetric
algebraic equations to be solved.

In order to depress the dispersion for high wavenumber,
highly refined finite element meshes (h-FEM) or higher orders of
polynomial approximation (p-FEM) are required, and the hp-FEM [1]
seems to give good results. However, to obtain an acceptable level of
accuracy, more than ten elements per wavelength are required. For
large wavenumber, refining the mesh to maintain this requirement
may become prohibitively expensive. Several methods to stabilize
the FEM have also been developed, such as the Galerkin least-square
(GLS) FEM [2], the quasi-stabilized FEM (QSFEM) [3], the residual-
free FEM (RFEM) [4] and the residual-based FEM [5] with applica-
tions to the Helmholtz problem. A review of these methods can be
seen in [6,7]. However, none of them eliminates the dispersion.

Meshless methods have several advantages over the classical
mesh-based methods. In the case of the Helmholtz equation, it
has already been shown that the EFGM [8,9], the multiple-scale

reproducing kernel particle method (RKPM) [10] and the so-called
radial point interpolation method (RPIM) [11], give very accurate
results for interior Helmholtz problems. Unfortunately in order to
ensure their accuracy, delicate background cells and a large number
of quadrature points have to be used for the global numerical
integration for the Galerkin method (the EFGM, the RKPM and
the RPIM), which dramatically increases the computational cost.
Recently two methods based on the method of fundamental solu-
tions (MFS) [12] and the boundary knot method (BKM) [13] have
been extended to Helmholtz-type equations. Both the two methods,
however, need to use the inner nodes for inhomogeneous problems
to guarantee the stability and accuracy of the solution. More
recently the boundary-node method (BNM) [14] has been applied
to Helmholtz problems which showed high convergence rates and
high accuracy. However, it is difficult to satisfy the boundary
conditions accurately in BNM. This makes it computationally much
more expensive than the BEM [15].

A new meshless weighted least-square (MWLS) method was
proposed to solve problems of elastostatics [16], wave propagation
and large deformation [17], and the advantages of better accuracy,
high efficiency and fast convergence were demonstrated. More
recently it has been successfully extended to steady and unsteady
state heat conduction problems [18,19]. Pan et al. [20] found that
the MWLS method is sensitive to boundary conditions. He devel-
oped the meshless Galerkin least-square (MGLS) method, with the
Galerkin method on the boundary and the least-square method in
the interior domain, and applied it to elasticity problems. An
alternative scheme is to use FEM interpolants in the boundary [21].
In this paper, the MGLS method is extended to acoustic problems,
with a focus on the 2-D dispersion effect for the Helmholtz
equation.

The paper is organized as follows. Section 2 presents the strong
form of the general acoustic problem. Section 3 gives a brief
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