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a b s t r a c t

This study deals with the numerical solution of three-dimensional partial differential equations by the

meshless global radial point collocation method based on various radial basis functions. First, second,

third, and fourth-order three-dimensional partial differential equations are considered. The effect of

shape parameters of various radial basis functions on the numerical accuracy is studied. The effect of grid

pattern on accuracy is also studied by several numerical examples.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematic models have been developed for the physical
phenomena in the areas of mechanics of solids, structures, and fluid
flows. Different types of partial differential equations have also
been derived for these phenomena. The method for solving partial
differential equations includes the finite element method, the finite
volume method, and the finite difference method. In recent years, a
new method called the meshless method has been developed [1–3].
Meshless method is used to establish a system of algebraic
equations for the whole problem domain without the use of a
predefined mesh [4]. The meshless methods fall into three cate-
gories according to the formulation procedures: meshless methods
based on weak-forms, meshless methods based on collocation
techniques, meshless methods based on the combination of weak-
forms and collocation techniques [3].

The meshless collocation methods have the advantages of a
simple algorithm, computational efficiency, and truly meshless.
Many researchers have utilized the meshless collocation methods
to solve partial differential equations. Hardy [5] solved the
equations of topography by the meshless collocation methods
based on the multiquadric radial basis function. Hardy [6] reviewed
the development of multiquadric-biharmonic method from 1968
to 1988. Kansa [7] presented a powerful, enhanced multiquadrics
(MQ) scheme for accurate interpolation and partial derivative
estimates. The meshless collocation methods based on the

multiquadrics radial basis function was used as the spatial approx-
imation scheme for parabolic, hyperbolic, and the elliptic Poisson’s
equation by Kansa [8]. Golberg et al. [9] interpolated the forcing
term of partial differential equations using multiquadric approx-
imations, and then use them to approximate particular solutions.
The technique of cross-validation was used to obtain a good shape
parameter of the multiquadrics. Sharan et al. [10] applied the
multiquadric (MQ) approximation scheme to solve two-dimen-
sional Laplace, Poisson, and biharmonic equations with Dirichlet
and/or Neumann boundary conditions. The method is also applied
successfully to a problem with a curved boundary. Hon et al.
[11–14] studied the numerical solution of a biphasic model,
Burgers equation, shallow water equation, and options pricing
model by the multiquadric method. Kansa and Hon [15] explored
several techniques, each of which improves the conditioning of the
coefficient matrix and the solution accuracy. Power and Barraco
[16] presented a thorough numerical comparison between unsym-
metric and symmetric radial basis function collocation methods for
the numerical solution of boundary value problems for partial
differential equations. Wong et al. [17] presented the application of
the compactly supported radial basis functions (CSRBFs) in solving
a system of shallow water hydrodynamics equations. The perfor-
mances of domain-type meshless collocation methods and bound-
ary-type meshless methods in solving partial differential equations
were compared by Li et al. [18]. It was found from their studies that
these two methods provide a similar optimal accuracy in solving
both 2D Poisson’s and parabolic equations. Larsson and Fornberg
[19] compared the RBF-baeed collocation methods against two
standard techniques (a second-order finite difference method and a
pseudospectral method), it was found that the former gave a much
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