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a b s t r a c t

The main issue in this paper is mathematical formulation and computational implementation of the

stochastic Boundary Element Method based on the generalized stochastic perturbation technique. The

key feature is a replacement of the given order polynomial response function with the least squares

method leading to a numerical determination of this response function. This new approach minimizes

the approximation error during the recovery of the structural response indexed with the random input

parameter, which is a decisive factor for the entire stochastic method accuracy; contrary to some lower

order techniques, numerical implementation of up to the fourth order probabilistic moments is

displayed. Computational experiments obey both analyses for the homogeneous and heterogeneous

structures with Gaussian random material parameters and also some comparison against the

Monte-Carlo simulation and analytical results.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Structural problems with random data appear frequently in
engineering practice, especially in all those cases, where some
parameters are taken from laboratory experiments or from in situ

measurements. Statistical estimators of these parameters influence
the final random response of the engineering system being
modeled. In deterministic analysis instead of full statistical infor-
mation the expected values are included into the computational
model. As it is widely known, there is a variety of stochastic
theoretical and computational methods that offer full correspon-
dence between random input data and the modeling options [1].
Besides the oldest Monte-Carlo simulation techniques, the spectral,
the perturbation, some symbolic as well as the random matrix
methodologies are employed to determine the influence of input
probabilistic characteristics on the final random behavior of an
engineering system. Their implementations in conjunction with
the Boundary Element Method (BEM) are available in mainly geo-
technical problems, where parameter random dispersion in civil
engineering seems to be the largest one, for groundwater [2–4],
seawater [5] and porous media flows [6], in heat conduction and
transfer issues [7,8] or even for some elastodynamics [9] and wave
propagation problems [10,11]. It should be mentioned that the
SBEM analyses are especially effective in random boundary geo-
metry modeling [12], so that it is used in the problems with
random boundary conditions [13–15] or in stochastic shape design
sensitivity [16]. The perturbation method is a specific approach,

where both input and output structural parameters are expanded
using classical Taylor series with random parameters. This expan-
sion is made around their expectations using the perturbation
parameter e together with the partial derivatives of increasing
order calculated with respect to input random parameter. Usually,
this perturbation was reduced to the second order only, which
excluded numerical analyses of probabilistic problems with the
coefficient of variation larger than 0.10. Moreover, the computation
of higher than the second probabilistic moments was quite
ineffective according to the second order approach.

Therefore, the new version of the generalized, perturbation-
based stochastic Boundary Element Method is invented here and
tested numerically. This version of SBEM offers both higher pertur-
bations orders and a computation of higher than the second proba-
bilistic moments analogously to the first version based also on the
Response Function Method (RFM) [17]. The basic difference is in
numerical determination of this response function, which now is
carried using the nonlinear least squares fitting. Now it is also
possible to optimize the order of the approximating polynomial
during the entire symbolic processing in the computer algebra
system MAPLE, v. 13. Let us remind here that the order of this
approximation was given a priori and corresponded directly to the
number of trial points around the mean value of the random input
parameter. This order optimization undoubtedly leads in turn to
minimization of the approximating error (and effectively speeds up
the probabilistic convergence of the method) since apparent linear
interrelations do not need to be approximated using 10th order
polynomials. Now, the optimal order of the approximating poly-
nomials determined via the least squares method guarantees the
perfect matching of the trial set of computational results with the
response function. It was not the case of some previous studies,
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