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The modified mild slope equation of [5] is solved using a combination of the boundary element method
(BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite
horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain with
variable depth is solved by a flexible order of accuracy FDM in boundary-fitted curvilinear coordinates.
The two solutions are matched along the common boundary of two methods (the BEM boundary) to
ensure continuity of value and normal flux. Convergence of the individual methods is shown and the
combined solution is tested against several test cases. Results for refraction and diffraction of waves
from submerged bottom mounted obstacles compare well with experimental measurements and other
computed results from the literature.
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1. Introduction

Water wave propagation from deep to shallow water is a major
concern in coastal engineering. Waves feel the bed as the domain
geometry changes when they approach the shoreline. Under the
assumptions of a potential flow, the governing equation for the
scattering of water waves over a bed topography is Laplace’s
equation subject to appropriate boundary conditions. The original
mild-slope equation (MSE) of [2] was derived by assuming the
linear, constant depth solution to be locally valid and integrating
over the depth. The result is a two-dimensional elliptic equation
describing linear wave scattering over moderately varying
bathymetry which captures both refraction and diffraction effects.
Booij [3] showed that the mild-slope equation can give accurate
results even with a plane bottom slope up to 1:3. An extension to
steeper bottom slopes was given by [13] who verified the
improvement by considering scattering from ripple patches.
Using a Galerkin eigenfunction expansion, [18] presented an
extended mild-slope equation (EMSE) which includes the effect of
both evanescent and propagating modes and is capable of treating
relatively steep bed profiles. The resulting equation includes
higher order terms of the bottom slope and the term proportional
to the bottom curvature, as well as the evanescent modes.
Chamberlain and Porter [5] derived the modified mild-slope
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equation (MMSE) that retains second-order terms, and [22]
derived a solution that takes into account the terms associated
with the evanescent modes with depth averaged mass flux and
pressure boundary conditions for the case of unidirectional wave
transformation. Suh et al. [26] used Green’s second identity and a
Lagrangian formulation to develop two equivalent time-depen-
dent equations for wave propagation over a rapidly varying
topography. Chandrasekera and Cheung [6] derived an elliptic
refraction—diffraction equation that includes the bottom curva-
ture and slope-squared terms. In their numerical solutions, it was
found that using the extended model to calculate cases of a
rapidly varying seabed produced better results than the tradi-
tional mild-slope equation. Following the procedure outlined by
[7,14] developed the extended hyperbolic mild-slope equation to
account for wave transformations over a rapidly varying topo-
graphy. Their results based on an FDM solution showed that the
hyperbolic equation had the same accuracy as the extended
elliptic equation. Hsu and Wen [11] re-cast the extended
refraction—diffraction equation into a time-dependent equation.
A comprehensive review of the original mild slope equation as
well as its extended and modified versions may be found in [33].

The modified mild slope equation has been solved numerically
using the FDM, the finite element method (FEM) and a form of the
BEM called the dual reciprocity boundary element method
(DRBEM). The solutions discussed above were implemented using
the FDM, as are those presented by [20,24,16] among others. The
DRBEM method was developed by [19] and later extended and
applied to this problem by many others including [32]. More
recent variations are given by [34,35]. Each of these discrete
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